

SACRIFICIAL ANODE CATHODIC PROTECTION OF BURIED PIPES

By:

WAN SAMSUDIN WAN KHALID 98405368

B.ENG (HONS) MECHANICAL ENGINEERING UNIVERSITY TECHNOLOGY MARA

ABSTRACT

Corrosion is the destructive result of chemical reaction between a metal or metal alloy and its environment. Corrosion science is the study of the chemical and metallurgical processes that occur during corrosion. Corrosion engineering is the design and application of methods to prevent corrosion. So, science should be together with engineering so that to invent new and better methods of prevention and apply methods of prevention and apply existing methods more intelligently and effectively.

In this project, I have three phases. The main objective for the first of this project is to study the rate of corrosion for the buried pipe by Sacrificial anode in different environment. Four specimens buried pipes (4 inch of diameter and 50cm length) prepared in different situations and one of the pipes used SACP for 5 months. For the second phase, to study the rate of corrosion for the buried pipe by using the new anode materials of different Mg and Zn composition. In this experiment, we conducted tests on 5 specimens (buried pipes I inch diameter and 9 inch length). All specimens were buried in the soil kept in separate glass tanks (size: IxIxI foot) for 3 weeks. The buried pipes protected by anode that has different in Zn composition. The last experiment in this project is to prepare PMMA based magnesium conducting polymer as anode material in SACP.

The important gain of this project is to understand the integration of Cathodic Protection especially about Sacrifical Anode Cathodic Protection method. Also, the exposure to the procedure in developing for the new anode material in SACP which can reduce cost of prevention and expected to be an effective method.

CON	CONTENTS							
ACKNOWLEDGEMENT								
ABSTRACT								
TABLE OF CONTENTS								
CHAPTER ONE								
1.0	INTRODUCTION							
1.1	CATH	ECTION	1					
1.2	OBJE		2					
1.3	SCOPE OF THIS WORK							
CHAPTER TWO								
2.0	PRINCIPLE OF CORROSION							
2.1	ELECTRODE REACTION							
	2.1.1	The corrosion	cell	4				
2.2	INTRODUCTION TO CORROSION 6							
	2.2.1 Forms of Corrosion			6				
		2.2.1.1	General/Uniform Corrosion:	6				
		2.2.1.2	Localized Corrosion:	9				
		2.2.1.3	Metallurgically influenced corrosion	10				
		2.2.1.4	Mechanically assisted degradation	11				
		2.2.1.5	Environmentally induced cracking	12				

2.3	TYPE	ES AND REMEDY FOR CORROSION/PROTECTION	13		
	2.3.1	Uniform Corrosion	13		
	2.3.2	Galvanic Corrosion	14		
	2.3.3	Crevice Corrosion	15		
	2.3.4	Pitting Corrosion	16		
2.4	THE	THE SIGNIFICANT FACTOR OF CORROSION			
	2.4.1	Environment	17		
	2.4.2	Steel Surface Conditions	18		
	2.4.3	Stray current	20		
СНА	PTER T	ГНКЕЕ			
3.0	CAT	HODIC PROTECTION	21		
3.1	SACI	RIFICIAL ANODE CATHODIC PROTECTION (SACP)	21		
	3.1.1	Anode material	22		
3.2	IMPRESS CURRENT CATHODIC PROTECTION (ICCP)				
	3.2.1	Anode material	27		
3.3	PRO	TECTION BY COATING	27		
СНА	PTER	FOUR			
4.0	INTE	RODUCTION	30		
4.1	ANO	DE	31		
4.2	PIPE		32		
4.3	INST	ALLATION	32		
4.4	EXP	ERIMENTAL PROCEDURE	34		

4.5	RESULTS FROM PHOTOGRAPHS				
4.6	THE RESULT A	ND DISCUSSION	40		
СНА	PTER FIVE				
5.0	THE ANODE MA	ATERIAL (Zn + Mg)	50		
5.1	EXPERIMENT PROCEDURE				
5.2	RESULT AND DISCUSSION				
5.3	POLYMETHYL-METACHRYLATE(PMMA) ANODE MATERIAL 58				
5.4	PROCEDURE TO PREPARED (PMMA) BASED ANODES				
5.5	OBSERVATION		60		
СНА	PTER SIX				
6.0	CONCLUSION				
1.6	.1 SUGGESTIONS FOR FUTURE WORK				
REF	REFERENCES				
APPE	ENDICES				
APPE	NDIX I	ANODE PROPERTIES OF SACP			
APPE	NDIX 2	ZINC ANODE AND ALLOY CHARACTERIS	STICS		
APPE	NDIX 3	HAVEN CURRUSION ENGINEERING SON	BHD.		
APPE	NDIX 4	INFORMATIOM OF COMPOSITE ANODE			