NAPHTHENIC ACID REMOVAL FROM PETROLEUM CRUDE OIL UTILIZING SODIUM THIOCYANATE WITH THE AID OF Ni/Ce AND Ni/Ca CATALYSTS

NURSHAHIRAH BINTI MOHD HALIM

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Bachelor of Science (Hons.) Chemistry Universiti Teknologi MARA

JULY 2017

ABSTRACT

NAPHTHENIC ACID REMOVAL FROM PETROLEUM CRUDE OIL UTILIZING SODIUM THIOCYANATE WITH THE AID OF Ni/Ce AND Ni/Ca CATALYSTS

The Naphthenic Acids (NAs) found in crude oil can leads to corrosion problems in oil refinery equipment, storage, facilities and even reduces the performances of the oil. In this study, catalytic deacidification reaction was done in order to lowering Total Acid Number (TAN) in crude oil to below than one mg KOH/g utilizing sodium thiocyanate with the aid of Ni/Ca and Ni/Ce catalysts. The catalyst were supported on the alumina through Incipient Wetness Impregnation (IWI) methods and calcined at calcination temperature of 800, 900 and 1000°C. Ni/Ca and Ni/Ce catalyst were characterized by using X-ray Diffraction Spectroscopy (XRD), Brunauer-Emmett-Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetry Analysis-Differential Thermal Analysis (TGA-DTA) to study physical properties of the catalyst. The results shows that Ni/Ca(10:90)/Al₂O₃ and Ni/Ce(10:90)/Al₂O₃ catalyst successfully reduced number of acids in crude oil to below that 1.00 mg KOH/g. Ni/Ca(10:90)/Al₂O₃ catalyst reduced TAN of crude oil from original TAN, 2.80 mg KOH/g to 0.28 mg KOH/g while Ni/Ce(10:90)/Al2O3 catalyst reduced to 0.65 from 2.80 mg KOH/g at 1000°C calcination temperature and catalyst loading of 4 bead (0.50%). This proven by BET results that shows both catalysts have the highest surface area, average pore diameter and pore volume at calcination temperature of 1000°C that allows more molecular NAs to enter pores of the catalyst. XRD analysis proposed Al₂O₃ face centered cubic (fcc) was active site for Ni/Ca(10:90)/Al₂O₃ catalyst while CeO₂ fcc was the active site for Ni/Ce(10:90)/Al2O3 catalyst. Stretching of S-C=N thiocyanate and pure metal oxides stretching modes were detected on $Ni/Ca(10:90)/Al_2O_3$ catalyst at wavelength of 2075.90 and 567.51 to 468.94 cm⁻¹ respectively by FTIR analysis after catalytic deacidification process which indicates that there were impurities have adsorbed on the catalyst. The catalytic reaction was fixed at reaction time of 15 minutes and temperature at 27°C. As a conclusion, both catalysts can reduce TAN to less than 1.00 mg KOH/g. However, $Ni/Ca(10:90)/Al_2O_3$ catalyst shows more potential catalyst compared to Ni/Ce(10:90)/Al₂O₃ catalyst since it can lowered down acid number in crude oil to most lowest value Ni/Ce(10:90)/Al₂O₃catalyst. than

TABLE OF CONTENTS

-				
r	2	ø	e	
-	-	-	-	

ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	ix
ABSTRACT	xi
ABSTRAK	xii

CHAPTER 1 INTRODUCTION	
1.1 Background of study	1
1.2 Problem statement	4
1.3 Significance of study	5
1.4 Objectives of study	6

CHAPTER 2 LITERATURE REVIEW

2.1 Naphthenic Acids Removal	7
2.1.1 Catalytic Decarboxylation	7
2.1.2 Liquid-Liquid Extraction	10
2.1.3 Catalytic Neutralization	13
2.2 Catalytic Characterization	15

CHAPTER 3 METHODOLOGY

3.1 Materials and Feedstock	18
3.2 Preparation of Catalyst	18
3.3 Catalyst Characterization	20
3.3.1 X-ray Diffraction Spectroscopy (XRD)	21
3.3.2 Brunauer-Emmett-Teller (BET)	21
3.3.3 Fourier Transform Infrared Spectroscopy (FTIR)	22
3.3.4 Thermogravimetry Analysis-Differential	22
Thermal Analysis (TGA-DTA)	
3.4 Deacidification Process	23
3.5 Total Acid Number (TAN) Determination	24

1

CHAPTER 4 RESULTS AND DISCUSSION

4.1 Catalyst Characterization	27
4.1.1 Thermogravimetry Analysis-Differential	27
Thermal Analysis (TGA-DTA)	
4.1.2 X-ray Diffraction Spectroscopy (XRD)	32
4.1.3 Brunauer-Emmett-Teller (BET)	36
4.1.4 Fourier Transform Infrared Spectroscopy (FTIR)	40
4.2 Total Acid Number (TAN) for Untreated Crude Oil	43
4.3 Effect of Calcination temperature	44
4.4 Effect of Catalyst Dosage	47
4.5 Reusability Testing	50

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS	
5.1 Conclusion	53
5.2 Recommendations	55

CITED REFERENCES	57
APPENDICES	60
CURRICULUM VITAE	69

۷

LIST OF TABLES

Table	Caption	Page
4.1	TGA analysis on weight loss and description of Ca based catalyst	28
4.2	TGA analysis on weight loss and description of Ce based catalyst	31
4.3	Peak assignment in the XRD pattern of Ni/Ca(10:90)/Al ₂ O ₃	34
	calcined at 800, 900 and 1000°C	
4.4	Peak assignment in the XRD pattern of Ni/Ce(10:90)/Al ₂ O ₃	36
	calcined at 800, 900 and 1000°C	
4.5	BET surface area and average pore diameter at different	37
	calcination temperature of Ni/Ca(10:90)/Al ₂ O ₃ catalyst	
4.6	BET surface area and average pore diameter of	39
	Ni/Ce(10:90)/Al ₂ O ₃ catalyst at different calcination temperature.	
4.7	FTIR assignment of Ni/Ca(10:90)/Al ₂ O ₃ catalyst	43