UNIVERSITI TEKNOLOGI MARA

DEVELOPMENT OF CARBON NANOTUBES DERIVED FROM PALM OIL AS ELECTRODE MATERIALS FOR LITHIUM ION BATTERY

TUNKU ISHAK AL-IRSYAD TUNKU KUDIN

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

June 2009

Candidate's Declaration

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

In the event that my thesis is found to violate the conditions mentioned above, I voluntarily waive the right of conferment of my degree and agree to be subjected to the disciplinary rules and regulations of Universiti Teknologi MARA.

Name of Candidate	Tunku Ishak Al-Irsyad Tunku Kudin	
Candidate's ID No.	2006648845	
Programme	Master of Science (AS 780)	
Faculty	Faculty of Applied Sciences	
Thesis Title	Development of Carbon Nanotubes Derived From Palm	
	Oil as Eleclrode-Materials for Lithium Ion Battery	

Signature	of Candidate
Date	

15 June 2009

ABSTRACT

The emergence of nanoscience and nanotechnology has been reckoned as the driving force to the development of alternative materials fof energy storage application. The constant demand for high energy density, lighter, thinner lithium-ion battery has motivated research into new battery materials. Carbon nanotubes are arrangements of carbon atoms in the form of thin, hollow tubes. Their physical and chemical properties have attracted much interest in recent years. In this present study, the main focus has been devoted to synthesizing carbon nanotubes (CNTs) via spray pyrolysis method. Natural palm oils has been used as carbon feedstock for this study. Several types of transition metals catalyst namely nickel (Ni), cobalt (Co), iron (Fe) has been used for synthesized of CNTs. Combination of bimetallic Ni/Co, Ni/Fe and Ni/Fe/Mn also has been studied as catalyst sources. The synthesis temperature has been optimized between 700 °C and 900 °C. FE-SEM and HR-TEM study has been carried out to verify the properties of as-obtained black powder from the synthesis process at different parameters. The images showed that the powder obtained were multi-walled carbon nanotubes. The diameter of as-prepared multi-walled carbon nanotubes ranging from 10 nm to 50 nm. XRD study also has been carried out to determine the phase presence in the materials. Results reveal that the crystalline nature of carbon nanotubes greatly affected by the different catalyst used and temperature control as well. In the second part of this study, systematic investigation of carbon nanotubes as anode materials for lithium batteries has been performed. Electrochemical charge-discharge studies of these MWCNTs electrodes had a reversible lithium storage capacity of 100 - 400 mAh/g. It has been observed that the crystallinity of MWCNTs have a direct influence on the specific capacity of these MWCNTs electrodes. The kinetics of Li-ion insertion in carbon nanotube electrodes also were characterized by cyclic voltametry measurements. Cyclic voltammetry measurement of MWCNTs electrodes synthesized from palm oils showed that this material exhibits reversible properties demonstrated by the presence of a pair of redox peaks, corresponding to lithium insertion and extraction in the MWCNTs structure.

TABLE OF CONTENTS

PAGES

ABSTRACT	ii
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	xii

CHAPTER ONE: INTRODUCTION

1.1	Background	1
1.2	Problem Identification	2
1.3	Objectives of The Research	3

CHAPTER TWO: LITERATURE REVIEW

2.1	Carbo	n Nanotubes: An Introduction	
2.2 Synthesis of Carbon Nat		esis of Carbon Nanotubes	6
	2.2.1	Arc Discharge Method	6
	2.2.2	Laser Ablation Method	9
	2.2.3	Chemical Vapour Deposition Method	11
	2.2.4	Spray Pyrolisis Method	14
2.3	Application of Carbon Nanotubes		16
	2.3.1	Novel Nano-composites	16
	2.3.2	As Field Emission Electron Guns	17
	2.3.3	Electronic	18
	2.3.4	Hydrogen Storage in Carbon Nanotubes	19

	2.3.5	Lithium Storage in Carbon Nanotubes				20
2.4	Lith	ium ion	Battery:	Brief	Introduction	2 2
	2.4.1	Electrolyte M	aterials			23
	2.4.2	Cathode Mate	rials			25
	2.4.3	Anode Materials				
		2.4.3.1 Carbon as Anode Materials				28
		2.4.3.2 Carbon Nanotubes as Anode Materials				32
CHA	PTER 1	THREE: RES	EARCH METHO	DOLOGY		
3.1 Carbon Precursor Materials						34
	3.1.1 Preparation of Silica Supported Nickel, Cobalt and Iron Catalyst					34
	3.1.2	Preparation of	f Silica Supported	Nickel/Coba	lt, Nickel/Iron and	36
		Nickel/Iron I	Manganese Cataly	st		
3.2 Spray Pyrolysis Technique for the Synthesis of Carbon Nanotubes				bon Nanotubes	36	
3.3	3.3 Characterization of Synthesized Carbon Nanotubes				40	
	3.3.1	Field Emissio	on Scanning Electr	ron Microsco	ру	
		(FE-SEM) A	nalysis			40
	3.3.2	High Resolut	ion Transmission	Electron Mi	croscopy	
		(HR-TEM) A	nalysis			40
	3.3.3	X-ray Diffrac	tion (XRD)			42
	3.3.4	Thermogravia	metric Analysis (7	(GA)		44
3.4	Studie	es on Lithium (Cells Using CNTs	As Anode M	laterials	45
	3.4.1	Electrochemi	cal Testing			46
	3.4.2	Charge Disch	narge of Lithium I	on Cells		46
	3.4.3	Cyclic Volta	mmetry of Lithiun	n Ion Cells		46