THE EFFECT OF TiO₂ ON AZO DYE (TARTRAZINE) DEGRADATION PROCESS USING UV LIGHT

NUR SOLEHAH BINTI ABDUL FATAF

Final Year Project Report Submitted in Partial Fulfilment of the Requirement for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Science, Universiti Teknologi Mara

JULY 2017

ABSTRACT

THE EFFECT OF TiO₂ ON AZO DYE (TARTRAZINE) DEGRADATION PROCESS USING UV LIGHT

The effect of contaminants to human health and environment are at alarming rate. This is because, wastewater are polluted with the effluent coming from industry especially food industry. Food industries use various types of dyes such as azo dyes, anthraquinone and triphenylmethane. In this study, the dye used was azo dye which is Trartrazine. Plus, there are many research shows that Tartrazine can cause harm and suffers to the environment especially human health. Ergo, researchers found so many ways to treat azo dye in wastewater effluent such as photocatalytic degradation process. Photocatalytic degradation by using TiO₂ as the catalyst is proven efficient to degrade the dye. This study was conducted to determine the optimum weight of TiO2, pH, radiation time and to evaluate the effectiveness of TiO₂ as photocatalyst in the photodegradation process by using UV radiation under different parameters. The parameters are in the absence of catalyst and UV radiation, absence of catalyst in the presence of UV radiation, presence of catalyst in the absence of UV radiation and in the presence of catalyst and UV radiation. Based on this research, optimum conditions that can increase the percent of degradation were 30 mg of catalyst in pH 7. For optimum time, different conditions have different optimum time. Nevertheless, among four conditions that have been set, the results show that photodegradation in the presence of catalyst and UV radiation has the highest percent of degradation which 90.3%. This indicates that this condition was the most effective condition for photodegradation to occur.

TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	х

CHAPTER 1: INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	3
1.3	Significant study	4
1.4	Objective of study	5

CHAPTER 2: LITERATURE REVIEW

2.1	Introduction	6
2.2	Industrial waste water	6
2.3	Azo Dyes	7
2.4	Wastewater treatment	9
2.5	Photocatalysis	10
2.6	Titanium dioxide	12
2.7	рН	13

CHAPTER 3: METHODOLOGY 3.1 Material

3.1	Material		14
	3.1.1	Instrument	14
	3.1.2	Tartrazine	15
	3.1.3	Titanium dioxide	15
	3.1.4	The pH	15
	3.1.5	UV Light Source	16
3.2	Method		16
	3.2.1	Determination of the maximum wavelength of	16
		Tartrazine Solution	
	3.2.2	Calibration curve for Tartrazine solution	16
	3.2.3	Determination of optimum weight of Titanium dioxide	17
	3.2.4	Determination of optimum pH of photodegradation of Tartrazine	18
	3.2.5	Determination of optimum time of photodegradation of Tartrazine	19

	3.2.5.1	Degradation of Tartrazine in absence of catalyst and of UV radiation	19
	3.2.5.2	Degradation of Tartrazine in absence of catalyst and presence of UV radiation	19
	3.2.5.3	Degradation of Tartrazine in presence of catalyst and absence of UV radiation	20
	3.2.5.4	Degradation of Tartrazine in presence of catalyst and presence of UV radiation	21
3.2.6	Determin	nation of effectiveness of photocatalytic	21
	degradat	ion process	
	3.2.6.1	Degradation of Tartrazine in absence of catalyst and of UV radiation	21
	3.2.6.2	Degradation of Tartrazine in absence of catalyst and presence of UV radiation	22
	3.2.6.3	Degradation of Tartrazine in presence of catalyst and absence of UV radiation	22
	3.2.6.4	Degradation of Tartrazine in presence of catalyst and presence of UV radiation	23

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Maximum wavelength of Tartrazine solution	24
4.2	Calibration curve of Tartrazine solution	26
4.3	Optimum weight of Titanium dioxide	27
4.4	Optimum pH of photo degradation of Tartrazine	28
4.5	Optimum time of photo degradation of Tartrazine	29
4.6	Determination of effectiveness of Tartrazine photocatalytic degradation process	32

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	34
5.2	Recommendations	35
CITE	ED REFERENCES	36
APPI	ENDICES	39
CUR	ICULUM VITAE	52

LIST OF FIGURES

Figure	Caption	Page
2.1	Structural formula of Tartrazine	8
4.1	The maximum wavelength of Tartrazine solution	25
4.2	Calibration curve of Tartrazine solution	26
4.3	Maximum weight of Titanium dioxide	27
4.4	Optimum pH of Tartrazine	28
4.5	Degradation of Tartrazine in absence of catalyst and UV radiation	29
4.6	Degradation of Tartrazine in absence of catalyst and presence of radiation	30
4.7	Degradation of Tartrazine in presence of catalyst and absence of radiation	31
4.8	Degradation of Tartrazine in presence of catalyst and UV radiation	32