UNIVERSITI TEKNOLOGI MARA

NATURAL RADIONUCLIDES DISTRIBUTION IN SOIL, AND LINKAGES IN WATER, SEDIMENT, AND SELECTED FISHES IN KUALA KENIAM, TAMAN NEGARA, PAHANG, MALAYSIA

NURULHUDA BINTI KASSIM

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

August 2014

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA (UiTM), regulating the conduct of my study and research.

Name of Student	:	Nurulhuda binti Kassim
Student I.D. No.	:	2009913321
Programme	:	Master of Science (AS780)
Faculty	:	Applied Sciences
Thesis Title	:	Natural Radionuclides Distribution In Soil, And Linkages In Water, Sediment, And Selected Fishes In Kuala Keniam, Taman Negara, Pahang, Malaysia.
Signature of Student	:	976
Date	:	August 2014

ii

ABSTRACT

Naturally occurring radionuclides such as ²²⁶Ra, ²²⁸Ra and ⁴⁰K which emit gamma radiation through their decay process could reach the human. The amount of radioactivity concentration of these radionuclides is the important factor in assessing whether it is harmful or vice versa. In this study, the Kuala Keniam, Taman Negara, Pahang was chosen as a study area, since Taman Negara is an undisturbed area and reserve for natural or semi natural land and restricted from most development in Malaysia. In this area, depending on the geological condition of the surrounding, it may contain some natural radionuclides which emit certain amount or levels of radiation. The gamma activities and the concentration of radionuclides were determined using high resolution gamma-ray spectrometer and EDXRF respectively. In this study, the area is divided into three areas based on their location; Zone 1 is in the base camp, Zone 2 is in the jungle and Zone 3 is at Keniam River. The activity concentration of soil in Zone 1 is higher than Zone 2 because of the geographical condition between both Zones. The mean activity concentration of water in Zone 2 is higher than Zone 3 because water in Zone 3 is more stagnant than water in Zone 2. The radiation exposure based on radium equivalent (Ra_{eq}), absorbed dose (D), annual effective dose (AED), external hazard index (H_{ex}) and internal hazard index (H_{in}) via analysis of ²²⁶Ra, ²²⁸Ra, and ⁴⁰K was calculated. Transfer ratio from water to fish is higher than transfer ratio from sediment to fish. In short, based on the radiation index, the area is considered safe since the level of radiation is lower than the annual dose limit.

TABLE OF CONTENT

	Page
AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENT	v
LIST OF FIGURES	viii
LIST OF TABLES	ix
LIST OF ABBREVIATIONS	xi

CHAPTER ONE: INTRODUCTION

Background of Research	1
Problem Statements	4
Scope and Limitations	4
Objective of the Research	5
Significant of Study	5
	Background of Research Problem Statements Scope and Limitations Objective of the Research Significant of Study

CHAPTER TWO: LITERATURE REVIEW

2.1	Preamble	2	6
2.2	Naturally	Occurring Radioactive Material (NORM)	6
	2.2.1	Natural Radioactivity in Environment	9
	2.2.2	Uranium (²³⁸ U)	11
	2.2.3	Thorium (²³² Th)	12
	2.2.4	Potassium (⁴⁰ K)	13
2.3	Previous	Studies	14
	2.3.1	Radionuclides in Malaysia	14
	2.3.2	Natural Radionuclides in Soils	15
	2.3.3	Natural Radionuclides in Sediment	16

	2.3.4 Natural Radionuclides in Fish	17
	2.3.5 Natural Radionuclides in Water	17
2.4	Kuala Keniam Area	19
2.5	Distribution of Radionuclides	22
2.6	Radionuclide Pathway	23
2.7	Radiological Risks	28
	2.7.1 Soil and Sediment	28
	2.7.1.1 Radium Equivalent Activity (Raeq)	28
	2.7.1.2 Absorbed Dose Rates (D)	28
	2.7.1.3 Annual Effective Dose (AED)	28
	2.7.1.4 External Hazard Index (H _{ex})	29
	2.7.2 Fish	30
	2.7.3 Water	31
2.8	Reviews On Gamma-Ray Spectrometry	32
2.9	Reviews On Energy Dispersive X-Ray Fluorescence (EDXRF)	34

CHAPTER THREE: METHODOLOGY

3.1	Preamble	36
3.2	Study Site	37
3.3	Sampling Points	39
	3.3.1 Locations for Soil Samples	39
3.4	Sampling and Sample Preparation	44
	3.4.1 Composite Sample for Soil and Sediment	44
	3.4.2 Fish	45
	3.4.3 Water	45
3.5	Sample Measurement	46
	3.5.1 Gamma-ray Spectrometer	46
	3.5.2 Energy Dispersive X-ray Fluorescence (EDXRF)	49
3.6	Surface Dose Measurement	50
3.7	Radiological Risk Calculation	51