ANALYSIS OF HEAVY METALS IN FRUITS BY USING INDUCTIVELY COUPLED PLASMA OPTICAL EMISSION SPECTROSCOPY (ICP-OES)

CHE WAN NURUL AIN BINTI CHE WAN MOHD ZAKI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences University Teknologi MARA

ABSTRACT

ANALYSIS OF HEAVY METALS IN FRUITS BY USING INDUCTIVELY COUPLED PLASMA OPTICAL EMISSION SPECTROSCOPY (ICP-OES)

Fruits are known as common nutritive foods for human diet that are rich with vitamins, minerals and fibers. However, they may be contaminated by heavy metals and can give risk to human health if taken in exceed quantities. In this study, the analysis of heavy metals was carried out in seven fruit samples which are green apple, red apple, fragrant pear, century pear, banana, mango and guavas. The investigated heavy metals are Cadmium (Cd), Copper (Cu), Manganese (Mn), Nickel (Ni) and Lead (Pb). All the samples were analyzed by Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). The concentration of the selected heavy metals in the fruit samples were ranged from 0.0467 $\mu g/g$ to 0.216 $\mu g/g$ for Mn, 0.133 $\mu g/g$ to 0.1 $\mu g/g$ for Pb and from 0.0433 $\mu g/g$ to 0.0733 $\mu g/g$ for Cu. The highest concentration of Ni in the fruit samples was 0.033 µg/g. Cd contents were below detection limit for all the fruit samples. The concentration of heavy metal elements obtained from all the samples were ranked with decreasing order as follow Mn > Pb > Cu > Ni > Cd. The concentrations of selected heavy metals were compared with standard allowable amount of toxic heavy metals and also with the literature values. The present study shows that all the concentrations of heavy metals were within the allowable limit except for Pb.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	iiii
TABLE OF CONTENTS	iv
LIST OF TABLE	v
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
LIST OF SYMBOLS	ix
ABSTRACT	х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Overview		1
	1.1.1	Agriculture Industry	1
	1.1.2	Fruits	2
	1.1.3	Heavy Metals in Fruits	3
1.2	Problem Statement		4
1.3	Significant of Study		4
1.4	Object	tives of Study	5

CHAPTER 2 LITERATURE REVIEW

2.1	Heavy Metals		
	2.1.1	Lead	6
	2.1.2	Cadmium	7
	2.1.3	Copper	7
	2.1.4	Nickel	8
	2.1.5	Manganese	8
2.2	Possibl	e Sources of Metals in Fruits	8
2.3	Bench	Mark Limit Concentration of Metals in Fruits	9
2.4	Advers	e Effects of Heavy Metals to Environment and Human	10
2.5	Analyti	cal Method for Heavy Metal Analysis in Fruits	11
	2.5.1	Atomic Absorption Spectroscopy (AAS)	11

	2.5.2	Inductively Coupled Plasma	13
	2.5.3	Voltammetry	14
CHAH	TER 3	METHODOLOGY	
3.1	Equipm	ent, Materials and Reagent	16
	3.1.1	Instrumentations and Equipment	16
	3.1.2	Glassware and Apparatus	16
	3.1.3	Materials	16
	3.1.4	Reagents	17
3.2	Method	s	17
	3.2.1	Sample Collection	17
	3.2.2	Sample Preparation	17
	3.2.3	Standard Preparation	18
3.3	Inductiv	vely Coupled Plasma Optical Emission Spectroscopy (ICP-	
	OES) A	nalysis	19
3.4	Statistic	al Analysis	20

CHAPTER 4 RESULTS AND DISCUSSION

Calibration Curve		21
Heavy Metals Concentration		23
4.2.1	Manganese (Mn)	23
4.2.2	Lead (Pb)	24
4.2.3	Copper (Cu)	26
4.2.4	Nickel (Ni)	27
4.2.5	Cadmium (Cd)	28
Statistical Analysis		29
4.3.1	Correlation Coefficient Analysis	29
4.3.2	One-Way Anova	30
	Calibrat Heavy M 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 Statistic 4.3.1 4.3.2	Calibration CurveHeavy Metals Concentration4.2.1Manganese (Mn)4.2.2Lead (Pb)4.2.3Copper (Cu)4.2.4Nickel (Ni)4.2.5Cadmium (Cd)Statistical Analysis4.3.1Correlation Coefficient Analysis4.3.2One-Way Anova

CHAPTER 5 CONCLUSION AND RECOMMENDATION 31

CITED REFERENCES	33
APENDICES	36
CURRICULUM VITAE	38

LIST OF TABLES

. .

Table	Captions	Page
2.1	Standard limits for Cd, Cu, Ni, Pb and Mn for an average adult	9
3.1	ICP-OES operating conditions for metal determination	19
4.1	Regression coefficient, (R^2) for each metal analyzed by ICP-OES	22
4.2	Pearson Correlation coefficients (r) between heavy metals	30