COMPARATIVE ADSORPTION OF COPPER(II) AND LEAD(II) FROM AQUEOUS SOLUTIONS ON SOURSOP (Annona muricata) LEAVES

NUR SABARINA SYAHIRAH BINTI MOHD FATHI

Final Year Project Report Submitted in Partial Fulfillment of the Requirement for the Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2019

ABSTRACT

COMPARATIVE ADSORPTION OF COPPER(II) AND LEAD(II) FROM AQUEOUS SOLUTIONS ON SOURSOP (Annona muricata) LEAVES

The investigation regarding the potential of soursop (Annona muricata) leaves as an adsorbent for the comparatives removal of Cu²⁺ and Pb²⁺ ions from aqueous solutions was conducted. The influence of pH, dosage, contact time and initial metal concentrations were studies in batch experiments at room temperature (298 K). The AML used in this study was characterized by FTIR spectroscopy. The presence of -OH, -NH₂, C=S, -CO, and C=O groups was presented during analysis of FTIR spectra. One of the main mechanisms for the removal of Cu²⁺ and Pb²⁺ was complexation as indicated by FTIR spectra. The pHzpc value of the AML was 5.98 and the maximum metal adsorption was at pH 5. The result at effect of dosage also indicated that the percentage removal of heavy metal ions (Cu²⁺ and Pb²⁺) was increasing with the increasing of amount of dosage. From the result, it is showed that the maximum percentage removal for Pb²⁺ (97.98%) is higher compared to Cu²⁺ (82%). The adsorption for both heavy metal ions was rapid at the first 5 minutes of contact, however slowly achieved the equilibrium time at 45 minutes agitation. Kinetic studies showed good correlation coefficient for the Pseudo-second order kinetic model. Meanwhile, Langmuir model was indicated to be more fitted than Freundlich model for the equilibrium data which gives $R^2 = 0.9987$ for Cu^{2+} ion and $R^2 = 0.9515$ for Pb²⁺ ion. Based on the FTIR spectra, kinetic and isotherm studies, it can be concluded that the higher adsorption of heavy metal ions onto the AML is Cu²⁺ ion.

TABLE OF CONTENTS

		Page	
ACK	NNOWLEDGEMENTS	iii	
TAB	TABLE OF CONTENTS		
LIST	COF TABLES	vi	
LIST	OF FIGURES	vii	
LIST	OF ABBREAVIATIONS	ix	
LIST	OF SYMBOLS	x	
ABS'	TRACT	xi	
ABS	ΓRAK	xii	
СНА	PTER 1 INTRODUCTION		
1.1	Background	1	
	1.1.1 Heavy Metals	1	
	1.1.2 Copper and Lead	2	
1.2	Problem statement	3	
1.3	Scope of study	5	
1.4	Objectives of the study	5	
CHA	PTER 2 LITERATURE REVIEW		
2.1	Concept of adsorption	6	
	2.1.1 Adsorption process	6	
2.2	2.1.2 Mechanism of adsorption	ð	
2.2	Agricultural of plant materials as adsorbents	0	
	2.2.1 Fine cone powder and meranti sawdust	9	
	2.2.2 Cellulose	12	
CHA	PTER 3 METHODOLOGY		
3.1	Materials	14	
3.2	Chemical Preparations	15	
3.3	Adsorbent preparation	15	
3.4	Characterization of Annona muricata (soursop) leaves	16	
3.5	Effect of pH	16	
3.6	Adsorption isotherm of Pb(II) and Cu(II)	17	
3.7	Adsorption kinetics of Pb(II) and Cu(II)	18	
CHA	APTER 4 RESULTS AND DISCUSSION		
4.1	Characterization of the adsorbent	19	
4.2	Effect of pH	24	
4.3	Effect of dosage	27	
4.4	Effect of initial heavy metal ions concentration and contact time	30	
	4.4.1 Adsorption kinetic study	32	
	4.4.1.1 Pseudo-first order kinetic model	33	
15	4.4.1.2 Pseudo-second order kinetic model	38	
4.3	Ausorphion isolaenni study	40	
	4.5.2 Freundlich isotherm model	42	
		4.	

CHA	APTER 5 CONCLUSION AND RECOMMENDATION	
5.1	Conclusion	49
5.2	Recommendations	50
CIT	ED REFERENCES	51
CUR	56	

Table	Caption	Page
2.1	The differences of chemisorption and physisorption	7
4.2	The uptake of Cu^{2+} and Pb^{2+} ions by AML under various pH	27
	values	
4.3	Percentage removal (%) of Cu^{2+} and Pb^{2+} at different dosage	28
4.4	Pseudo-first order and pseudo-second order kinetic model	37
	parameters onto AML at different initial concentration	
4.5	Adsorption isotherm model parameters for Cu^{2+} and Pb^{2+} ions	47
	onto AML at different initial concentration	

LIST OF TABLES