EVALUATION OF ANTIOXIDANT AND ANTIMICROBIAL POTENCY OF STEM OF ENTADA SPIRALIS

NUR KHAIRUNNISA' BINTI MAHA YUDDEN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2019

ABSTRACT

EVALUATION OF ANTIOXIDANT AND ANTIMICROBIAL POTENCY OF STEM OF ENTADA SPIRALIS

Entada spiralis known as 'Beluru' or 'Sintok' which is from Leguminosae family was used in this research to determine the antioxidant and antimicrobial properties. This plant was known to contain chemical substances which are phytochemical or also known as secondary metabolites and have been used to treat disease and as health care. In determining antioxidant and antimicrobial properties, several methods were conducted. The stem of E.spiralis was extracted using four different polarities of solvents such as petroleum ether, dicholoromethane, ethyl acetate and methanol. Phytochemical screening on TLC using certain spraying reagent, FTIR analysis, dot blot assay, radical scavenging activity and disc diffusion method was conducted to evaluate antioxidant and antimicrobial potency of E.spiralis. From the phytochemical screening test, it has been screened that stem of E.spiralis contained terpenoids, saponins and leucoanthocyanins. From the antimicrobial study of disc diffusion method, EA extract are the most active extract with the largest inhibition zone of 19 mm towards Erwinia sp. From the result of dot blot assay, EA extract is the most antioxidative extract which showed the highest intensity of white colour compared to the other extract. In the radical scavenging activity, standard ascorbic acid (IC₅₀ 9 µg/mL), exhibited the strongest scavenging activity compared with other extracts followed with methanol extract (IC₅₀ 11 µg/mL), ethyl acetate (IC₅₀ 13 µg/mL) and petroleum ether (IC₅₀ 42 µg/mL) extracts. While the DCM extract has high IC₅₀ values of more than 100 µg/mL. This study has finally achieved its objectives by focusing on screening phytochemicals, evaluating antioxidant and antimicrobial properties from stem of E. spiralis.

TABLE OF CONTENTS

		Page
ACK	NOWLEDGEMENT	iii
	LE OF CONTENTS	iv
	OFTABLES	vi
LIST	vii	
LIST	viii	
	TRACT	X
ABS'	xi	
CHA	PTER 1 INTRODUCTION	
1.1	Background of study	1
1.2	Problem statement	3
1.3	Significance of study	4
1.4	Objectives of study	4
1.5	Scope of study	4
CITA	DODD AT TODD A THIND DESCRIPTS	
	PTER 2 LITERATURE REVIEW	6
2.1 2.2	Leguminosae family Entada spiralis	6 8
2.3	Antioxidant activity of Entada species	11
2.4	Antimicrobial activity (plant pathogen)	15
	ě.	
CHA	PTER 3 METHODOLOGY	
3.1	Material	
	3.1.1 Raw materials	. 18
	3.1.2 Chemicals	18
3.2	Apparatus and instruments	19
3.3	Sample preparation and plant extraction	
	3.3.1 Sample preparation	20
	3.3.2 Plant extraction for crude extracts	20
3.4	Preliminary phytochemicals screening test	
	3.4.1 Test for steroids	21
	3.4.2 Test for temenoids	22

	3.4.3	Test for tannins	22		
		Test for saponins	22		
		Test for anthocyanins	22		
		Test for leucoanthocyanins	22		
	3.4.7	Test for coumarins	23		
	3.4.8	Test for alkaloids	23		
3.5	Thin layer chromatography analysis				
		Preparation of developing solvent			
		3.5.1.1 Developing solvent for crude petroleum ether	23		
		3.5.1.2 Developing solvent for crude dichloromethane	23		
		3.5.1.3 Developing solvent for crude ethyl acetate	24		
		3.5.1.4 Developing solvent for crude methanol	24		
	3.5.2		24		
	3.5.3	Developing TLC in developing solvent	25		
		Screening phytochemicals on TLC plates	25		
3.6	Fourie	er transform infra-red (FTIR) analysis	26		
3.7	Antio	xidant assay			
	3.7.1	Dot blot assay	27		
	3.7.2	Radical scavenging activity	27		
3.8	Antib	acterial assay (disc diffusion method)			
	3.8.1	Preparation microbial inoculums	28		
	3.8.2	Disc diffusion assay	28		
CILA	DEED /	RESULTS AND DISCUSSION			
			20		
4.1	Extrac		29		
4.2		ninary phytochemicals screening test	30		
4.3		ayer chromatography analysis	31		
4.4		ΓIR analysis 4			
4.5		xidant assay	44		
		Dot blot assay	44		
16		Radical scavenging activity	46 49		
4.6	Anuo	acterial activity	49		
СНА	PTER S	S CONCLUSION AND RECOMMENDATIONS			
5.1	Concl	usion	54		
5.2	Recor	nmendations	55		
J. <u>w</u>	10001		33		
CITI	ED REF	ERENCES	56		
APPENDICES					
		IIM VITAE	70		

LIST OF TABLES

Table	Caption	Page
2.1	Antioxidant activities from stem of Entada phaseoloides	13
2.2	Antioxidant activities from stem of Entada abyssinica	14
3.1	Methods for spraying reagent preparation	25
4.1	Mass and percentage yield of E. spiralis stem extract	29
4.2	Result for the preliminary phytochemicals screening test	30
4.3	TLC characteristic of compound in PE extract	32
4.4	TLC characteristic of compounds in DCM extract	35
4.5	TLC characteristic of compounds in EA extract	38
4.6	TLC characteristic of compounds in MeOH extract	40
4.7	IR spectrums for all crude extract and interpretations	42
4.8	The scavenging activity (IC ₅₀ values) of stem extracts of E . spiralis	48
4.9	In vitro antibacterial activity for each crude extract of <i>E.spiralis</i> stem	50