RESPONSE OF LEAF EXPLANT OF *Curculigo latifolia* (HYPOXIDACEAE) TOWARDS DIFFERENT HORMONES TREATMENTS IN PLANT TISSUE CULTURE

NURUL SYAFIRA BINTI BASAR

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Biology In the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2015

This Final Year Project Report entitled "**Response of Leaf Explant of** *Curculigo latifolia* (**Hypoxidaceae**) towards **Different Hormones Treatments in Plant Tissue Culture**" was submitted by Nurul Syafira binti Basar in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Biology, in the Faculty of Applied Sciences, and was approved by

Dr. Nor^ishah binti Abu Shah

Supervisor B.Sc. (Hons) Biology Faculty of Applied Sciences Universiti Teknologi MARA

Ilyanie binti HpYaacob Project Coordinator B.Sc, (Hons) Biology Faculty of Applied Sciences Universiti Teknologi MARA

Dr. Nor'aishah binti Abu Shah Head of Programme B.Sc. (Hons) Biology Faculty of Applied Sciences Universiti Teknologi MARA

Date: _____

TABLE OF CONTENTS

ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	xi
ABSTRAK	vii

CHA	PTER 1 INTRODUCTION	.1
1.1.	Background of Study	1
1.2.	Problem Statement	3
1.3.	Significance of Study	4
1.4.	Objectives of the Study	5

CHA	PTER	2 LITERATURE REVIEW	6
2.1. Hypoxidaceae		xidaceae	6
	2.1.1.	Characteristics of Hypoxidaceae	6
	2.1.2.	Genus Curculigo	7
	2.1.3.	Botany of Curculigo latifolia Dryand.	9
	2.1.4.	Chemical Constituents and Uses of Curculigo latifolia	11
2.2.	In Viti	ro Culture Technology	14
	2.2.1.	Tissue Culture of Curculigo latifolia	14
	2.2.2.	Culture Medium	15
	2.2.3.	Plant Growth Regulator	18
	2.2.4.	Callus	19
	2.2.5.	Plant Organogenesis	20
	2.2.6.	Establishment of Aseptic Culture	21

CHA	PTER 3	METHODOLOGY	23
3.1.	Mater	ials	23
	3.1.1	Raw Materials	23
	3.1.2	Chemical	23
	3.1.3.	Apparatus	24
3.2.	Metho	ods	24
	3.2.1.	Preparation of 70% Alcohol	24
	3.2.2.	Hormones Stock Solution Preparation	25
	3.2.3.	Media Preparation	26
	3.2.4.	Plant Preparation	28
	3.2.5.	Inoculation of Explant	30
3.3.	Param	eter	31
	3.3.1.	Percentage of the Explant Response (%)	31
	3.3.2.	Time taken for Response of Leaf Explant in Vitro (Week)	31
	3.3.3.	Types of Response Induce	31
	3.3.4.	Area of explant respond	31
3.4.	Statist	ical Analysis	32

СНАР	TER 4 RESULTS AND DISSCUSSION	33
4.1.	Establishment of Sterilization Techniques	34
4.2.	Response of Explants	11

CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS.......47

CITED REFERENCES	50
CURRICULUM VITAE	57

ABSTRACT

RESPONSE OF LEAF EXPLANT OF Curculigo latifolia (HYPOXIDACEAE) TOWARDS DIFFERENT HORMONES TREATMENTS IN PLANT TISSUE CULTURE

Curculigo latifolia (lemba) is an underutilized plant with high value especially medicinal properties. Even though traditionally used for food and natural remedies, it still possessed low market value due to lack of effort in cultivating the sources. Leaf explants were inoculated onto MS basal medium supplemented with combination of 6- Benzylaminopurine (BAP) and Naphthalene acetic acid (NAA) which vary in concentrations. In this study, the ranges on which the different hormones treatments that able to induce the response on C. latifolia was observed and determined. Direct root organogenesis were formed from leaf explant grown on Murashige and Skoog (MS) basal medium supplemented with 2.0 mg/L NAA alone and combination of 3.0 mg/L NAA and 0.5 mg/L BAP after four and six week, respectively. The highest number of root per explant were obtained in MS medium supplemented with NAA alone with average 5 roots emerged from one explant. Technique of sterilization was improved when disinfect the explant using 1 % HgCl₂. Even though aseptic condition and sterilization has been employed, contamination of cultures was still the most pressing problem in this study, whereby the contaminations were not successfully eliminated. Necrosis in culture material indicated the release of phenolic compounds. Further research should be concentrated on completely eliminate the contamination in culture.