ASCORBIC ACID DETERMINATION IN NATURAL AND COMMERCIAL FRUIT JUICES BY DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMMETRIC TECHNIQUE AT A GLASSY CARBON ELECTRODE

ZAIHASRA BINTI RAZIS

Final Year Project Report Submitted in Partial Fulfilment of the Requirement for the Degree of Bachelor of Science (Hons.) Chemistry In the Faculty of Applied Science Universiti Teknologi MARA

JANUARY 2017

ABSTRACT

ASCORBIC ACID DETERMINATION IN NATURAL AND COMMERCIAL FRUIT JUICES BY DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMMETRIC TECHNIQUE AT A GLASSY CARBON ELECTRODE

Vitamins are important in human diet because they will give sufficient amount of nutrient that needed by human body. Humans cannot synthesize the ascorbic acid, but this vitamin is commonly found in the varieties of vegetables and fruits. Hence, these vegetables and fruits become their main sources of ascorbic acid to meet requirement of dietary intake. The contents of ascorbic acid in the natural and commercial fruit juices must be analyzed. The differential pulse anodic stripping voltammetry (DPASV) technique using glassy carbon electrode (GCE) as a working electrode and phosphate buffer at pH 4.2 as a supporting electrolyte has been proposed to be developed. The experimental voltammetric parameters were optimized in order to obtain a maximum response with analytical validation of the technique. The optimum instrumental conditions for electroanalytical determination of ascorbic acid in phosphate buffer solution at pH 4.2 by the proposed DPASV technique were initial parameter $E_i = 0$ V, end parameter $E_f = 0.7$ V, accumulation time $t_{acc} = 60$ s, scan rate v = 0.125 V/s, accumulation potential $E_{acc} = 0$ V and pulse amplitude = 0.150 V. The anodic peak was appeared at 0.3598 V. The curve was linear from 0.028 to 1.703 mM (R^2 =0.999) with detection limit of 0.0114 mM. The precisions in terms of relative standard deviation (RSD) were 1.3%, 0.5% and 0.06%, respectively on the same day precision. The recoveries for the spiked 0.0852 mM (in commercial fruit juice samples) and 0.039 mM (in natural fruit juice samples) concentration of the ascorbic acid standard were 101.93 ± 1.65 % for pineapple sample by squeezing method while in commercial fruits sample; blackcurrent was 80.00 ± 6.25 %, orange was 73.65 ± 1.70 % and mango sample was 97.48 ± 16.90 %. The concentration of ascorbic acid in the commercial fruit juice samples; blackcurrent was 2.0213 mM, orange was 1.8286 mM and mango was 2.9798 mM. Meanwhile, there was no content of ascorbic acid detected for the lychee and guava commercial juice sample. For the natural fruit juice samples, the content of ascorbic acid in the orange was 0.800 mM and pineapple was 0.698 mM. It can be concluded that the developed technique is precise, accurate, rugged, low cost, fast and has potential to be an alternative method for routine analysis of ascorbic acid in the natural and commercial fruit juices.

TABLE OF CONTENT

	1 . T .
TABLE OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	ix
LIST OF SYMBOLS	xii
ABSTRACT	xiv
ABSTRAK	xv

CHAPTER 1 INTRODUCTION

2
7
8
10
10
11
12

CHAPTER 2 LITERATURE REVIEW

2.1	Analytical Method for Ascorbic Acid Determination in Fruit and Commercial				
	Fruits	Juices	13		
	2.1.1	High Performance Liquid Chromatography (HPLC)	13		
	2.1.2	Titrimetry	14		
	2.1.3	Spectrophotometry	16		
2.2	Voltar	nmetric Determination of Ascorbic Acid in Fruits and	Commercial		
	Fruits	Juices	18		
2.3	Voltar	nmetric Technique	22		
	2.3.1	Instrumentation in Voltammetric Measurement	22		

			14 Mar.	(+ · •) - · · · ·
	2.3.1.1 Working Electrode			23
	2.3.1.2 Reference Electrode			24
	2.3.1.3 Auxillary Electrode			25
232	The Supporting Electrolyte			25

CHAPTER 3 MATERIALS AND METHOD

3.1	Materi	als			26		
	3.1.1	Instrumentations			26		
	3.1.2	Equipment and Appa	ratus		27		
÷.	3.1.3	Chemical and Reagen	nts		27		
3.2	Metho	ds			28		
	3.2.1	Reagent and Chemic	al Preparation		28		
		3.2.1.1 Ascorbic Aci	d Stock Solution		28		
		3.2.1.2 Reagents			28		
		3.2.1.3 Phosphate bu	ffer solutions		28		
		3.2.1.4 Sodium Hydr	oxide (NaOH) solution,		29		
		0.1 M					
		3.2.1.5 Hydrochloric	Acid (HCl) Solution,		29		
		0.1M					
	3.2.2	General Procedure for	or Voltammetric Technique Analysis		29		
	3.2.3	Differential Pulse Stripping Voltammetry for Ascorbic Acid 30					
		Analysis					
		3.2.3.1 Method Optin	nization		30		
		3.2.3.1a	Effect of Accumulation Time (tacc)		30		
		3.2.3.1b	Effect of Scan Rate (v)		30		
		3.2.3.1c	Effect of Accumulation Potential (E_{acc}))	31		
		3.2.3.1d	Effect of Pulse Amplitude		31		
		3.2.3.2 Method Valid	lation		31		
		3.2.3.2a	Linearity		31		
		3.2.3.2b	Limit of Detection (LOD) and Limit of	f	32		
			Quantification (LOQ)				
		3.2.3.2c	Precision		32		

	3.2	2.3.2.d	Accuracy						32
	3.2	2.3.2e	Ruggedne	SS					33
3.2.4	Ascorbic	Acid	Determination	in	the	Natural	Fruit	Juices	and
	Commerc	ial Fru	its Juices						33
	3.2.4.1 Sample Collection and Pre-treatment 3								33
	3.2.4.2 Re	ecovery	of Ascorbic Ac	id I	Deter	mination	in the]	Natural	Fruit
Juices	and Comm	ercial	Fruits Juices					2 20 2	33
	3.2.4.3 De	etermin	ation of Ascorbi	ic A	cid ir	n the Nati	ural Fru	it Juices	and
Com	nercial Emi	te Inice	AC .						21

CHAPTER 4 RESULTS AND DISCUSSION

4.1	Optim	ization of Instrumental Conditions	35				
	4.1.1	Effect of Accumulation Time (t _{acc})	36				
	4.1.2	Effect of Scan Rate (v)	37				
	4.1.3	Effect of Accumulation Potential (Eacc)	38				
	4.1.4	Effect of Pulse Amplitude	39				
	4.1.5	Summary of the Overall Optimization Procedure	40				
4.2	Calibr	ation Curve of Ascorbic Acid and Validation of the Proposed DPA	ASV				
	method in Phosphate Buffer Solution at pH 4.2						
	4.2.1	Calibration Curve Ascorbic Acid Standard Solution	42				
	4.2.2	Determination of Limit of Detection (LOD) and Limit	42				
		Of Quantification (LOQ)					
4.3	Valida	ation of the Proposed DPASV Method	43				
	4.3.1	Precision	43				
	4.3.2	Accuracy	44				
	4.3.3	Ruggedness	46				
	4.3.4	Recovery Studies of Ascorbic Acid in the Natural Fruit Juices	and				
		Commercial Fruits Juices	48				
	4.3.5	Volumetric Determination of Ascorbic Acid in the Natural Fruit Ju	ices				
		and Commercial Fruits Juices	49				