DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMMETRIC (DPASV) TECHNIQUE FOR REACTIVE BLACK 5 ANALYSIS AT GLASSY CARBON ELECTRODE

NUR AQILAH BINTI ABDUL RAHMAN

Final Year Project Report Submitted In Partial Fulfillment of the Requirement for the Bachelor of Science (hons.) Chemistry Faculty of Applied Science Universiti Teknologi Mara

JANUARY 2017

ABSTRACT

VOLTAMMETRIC DETERMINATION OF REACTIVE BLACK 5 (RB5) AT A GLASSY CARBON ELECTRODE (GCE) BY DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMMETRIC TECHNIQUE.

Dyes are generally defined as an aromatic organic compound which shows an affinity towards the substrate to which they are being applied. Dyes are used to give colour to fabrics. Hence, the amounts and contents of dyes that used in fabrics industry must be analyzed. The presence of dyes in wastewater samples at any level is not safe for human. Therefore, dyes analysis needs a sensitive, precise, rapid, accurate, simple and low cost analytical method for dyes determination. The differential pulse anodic stripping voltammetry (DPASV) technique using glassy carbon electrode (GCE) as a working electrode and phosphate buffer at pH 4.2 as a supporting electrolyte has been proposed to be developed. The experimental voltammetric parameters were optimized in order to obtain a maximum response with analytical validation of the technique. The optimum parameters were initial potential (E_i) = +0.3 V, end potential (E_f) = +1.0 V, scan rate (ν) = 0.04 V/s, accumulation time $(t_{acc}) = 50$ s, accumulation potential $(E_{acc}) = 0.4$ V and pulse amplitude = 0.075 V. The anodic peak was appeared at 0.77972 V. The curve was linear from 0.5 to 1.25 mg/L (R²=0.9986) with detection limit of 0.025 mg/L. The precisions in terms of relative standard deviation (RSD) were 0.08%, 0.62% and 0.50% for consecutive three days. The range recovery achieved for 0.5, 0.7 and 1.0mg/L of RB5 standard solution in simulation dye sample was 104.40%, 89.71%, and 111.15% respectively. It can be concluded that the developed technique is precise, accurate, rugged, low cost, fast and has potential to be an alternative method for routine analysis of RB5 in stimulation dye sample.

TABLE OF CONTENT

TABLE OF CONTENTS	
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	ix
LIST OF SYMBOLS	xii
ABSTRACT	xiv
ABSTRAK	XV

CHAPTER 1 INTRODUCTION

1.1	Overview			1
	1.1.1	Batik Industry		1
	1.1.2	Definition of Batik		2
	1.1.3	General Process of Batik Making		2
	1.1.4	Batik Wastewaters, Characteristics and		3
		Environment Impacts		
	1.1.5	Dyes In General		4
1.2	Problem Statement			5
1.3	Significant of Study			6
1.4	.4 Objectives of Study			7
СНА	PTER 2	LITERATURE REVIEW		
2.1	Organ	ic Dyes and Subclasses		8
	2.1.1	Azo Dyes		8
	2.1.2	Reactive Dyes		9
	2.1.3	Reactive Black 5 (RB5)		10
2.2	Analy	tical Methods for Determination of Textile Reactive		12
	Azo D	Dyes		
	2.2.1	Spectrophotometric Determination of Textile Reactive		13
		Azo Dyes		

	2.2.2 Chromatographic Determination of Textile Reactive		13
		Azo Dye	
	2.2.3	Capillary Electrophoresis Determination of Textile	14
		Azo Dyes	
2.3	Voltar	mmetric Determination of Textile Azo Dyes	16
2.4	Voltammetric Techniques		19
	2.4.1	Instrumentation in Voltammetric Measurement	19
		2.4.1.1 Working electrode (WE)	20
		2.4.1.2 Glassy Carbon Electrode (GCE)	20
		2.4.1.3 Auxiliary Electrode (AE)	21
		2.4.1.4 References Electrode (RE)	22
	2.4.2	Supporting Electrolyte	23
	2.4.3	Current in Voltammetry	24
	2.4.4	Types of Voltammetric Technique	25
		2.4.4.1 Stripping Voltammetry	25
		2.4.4.2 Differential Pulse Voltammetry (DPV)	25

CHAPTER 3 MATERIALS AND METHOD

3.1	Instru	Instrumentations, Materials and Reagents	
	3.1.1	Instrumentations	26
	3.1.2	Equipment and Apparatus	27
	3.1.3	Chemical and Reagents	28
3.2	Methods		28
	3.2.1	Reagent and Chemical Preparation	28
		3.2.1.1 Reactive Black 5 (RB5) Stock Solution	28
		3.2.1.1 Reactive Black 5 (RB5) Standard Solution	28
		3.2.1.2 Reagents	28
		3.2.1.3 Phosphate buffer solutions	28
		3.2.1.4 Sodium Hydroxide (NaOH) solution,	29
		0.1 M	
		3.2.1.5 Hydrochloric Acid (HCl) Solution,	29
		0 1M	

3.2.2	Genera	eral Procedure for Voltammetric Technique Analysis		29
	3.2.3	Differential Pulse Stripping Voltammetry for RB5		
		Analysis		
		3.2.3.1 Method Optim	nization	30
		3.2.3.1a	Effect of Accumulation Time (tacc)	30
		3.2.3.1b	Effect of Scan Rate (v)	30
		3.2.3.1c	Effect of Accumulation Potential (Eacc)	30
		3.2.3.1d	Effect of Pulse Amplitude	31
		3.2.3.2 Method Valid	ation	31
		3.2.3.2a	Linearity	31
		3.2.3.2b	Limit of Detection (LOD) and Limit of	31
9 9			Quantification (LOQ)	
		3.2.3.2c	Precision and Repeatability	32
		3.2.3.2.d	Accuracy	32
		3.2.3.2e	Ruggedness	32
	3.2.4	Reactive Black 5 (RE	35) Determination in the Simulation	33
		Sample		
		3.2.4.1 Simulation Sample of Batik Wastewater		33
		3.2.4.2 Recovery of RB5 Standard Solution in the Simulation		33
		Sample		
CHA	PTER 4	RESULTS AND DI	SCUSSION	
4.1	Optim	ization of Instrumenta	1 Conditions	34
×	4.1.1	Effect of Accumulati	on Time (t _{acc})	34
	4.1.2	Effect of Scan Rate (v)		35
	4.1.3	Effect of Accumulati	on Potential (E _{acc})	36
	4.1.4	Effect of Pulse Ampl	itude	37
	4.1.5	Summary of the Ove	rall Optimization Procedure	38
4.2	Calibration Curve of RB5 and Validation of the Developed			39
	Method in Phosphate Buffer Solution at pH 4.2			

4.2.2Determination of Limit of Detection (LOD) and Limit40Of Quantification (LOQ)

4.2.1 Calibration Curve RB5

39