AVAILABILITY OF HEAVY METAL CONCENTRATION IN SOIL AROUND THE OIL PALM (ELAEIS GUINEENSIS) PLANTATION

RUBAIYAH BINTI ALIAS

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2017

ABSTRACT

AVAILABILITY OF HEAVY METAL CONCENTRATION IN SOIL AROUND THE OIL PALM (ELAEIS GUINEENSIS) PLANTATION

Four heavy metals (Cu, Zn, Pb and Ni) in nine different soil sampling point at oil palm (Elaeis guineensis) plantation were determined by Inductively Coupled Plasma - Optical Emission Spectrometry after wet digestion. This study focus for a number of heavy metals (Cu, Zn, Pb and Ni) that most commonly found at contaminated sites. The ranges of element concentrations for copper, zinc, lead and nickel were 0.76 - 2.00, 0.19 - 1.58, 0.07 - 0.22, and 0.01 - 0.05 mg/kg respectively. Copper content was higher than other metals in all soil samples. The concentration of heavy metals in soil show the following decreasing trend: Cu > Zn > Pb> Ni. All of the metal content level were below than permissible limit that recommended by World Health Organization. The Contamination Factor (CF) value was less than 6 for all heavy metal in nine different soil samples that supposedly not higher contaminated. All soil samples had geo accumulation index (Igeo) less than 2 that consider as uncontaminated. This generally indicate that the soil at oil palm plantation not totally consider as toxicity.

TABLE OF CONTENTS

Pages

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	2
1.3	Significant of study	3
1.4	Objectives of study	4

CHAPTER 2 LITERATURE REVIEW

2.1	Soils		
	2.1.1 \$	Soil properties	5
	2.1.2	Soil profile	6
2.2	Heavy	metal	
	2.2.ľ	Lead	9
	2.2.2	Copper	10
	2.2.3	Nickel	11
	2.2.4	Zinc	11
2.3	Geoche	mical Approaches	
	2.3.1	ICP – OES	12
	2.3.2	Contamination Factor	13
	2.3.3	Geoaccumulation Index	14
24	Permis	sible Limit	15

CHAPTER 3 METHODOLOGY

3.1	Materials		
	3.1.1	Raw material	16
	3.1.2	Chemical and reagents	16
	3.1.3	Equipment and analytical instrument	16
3.2	2 Methods		
	3.2.1	Soil sampling	17
	3.2.2	Sample Preparation	18
	3.2.3	ICP – OES analysis	19
	3.2.4	Geoaccumulation Index	20
	3.2.5	Contamination Factor	21

CHAPTER 4 RESULT AND DISCUSSION

4.1	Heavy metal concentration in analyzed soil samples	22
4.2	Contamination factor and Geo accumulation index	25
4.3	Comparison of metal accumulation in soil samples with	27
	Permissible limit	

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS

5.1	Conclusion	31
5.2	Recommendations	32
CITED REFERENCES		33
APPENDIX		36
CURICULUM VITAE		51

LIST	OF	TAE	BLES

a s a i

Tables	Caption	Page
2.1	Heavy metal concentration (mg/kg) in topsoils	7
	and subsoil	
2.2	Concentrations of heavy metals in agricultural	13
	soils in the cities from China (mg/kg)	
2.3	Contamination factor for selected metals in different	14
	agricultural soil samples	
2.4	Geo accumulation index of heavy metal in soil along Abed El – Aziz road	15
2.5	Maximum permissible limit of selected metal	15
3.1	Element and wavelength for ICP-OES analysis	19
3.2	Classification for geo accumulation index	21
3.3	Classification for contamination factor	22
4.1	Concentration of heavy metal in soil samples in mg/kg	24
	(mean±SD) data represented the mean of three replicate	S
4.2	Contamination factor and geo accumulation index for selected metals in soil samples	26
4.3	Comparison between maximum allowable limit of heavy metal in soil (mg/kg) with this study	28
4.4	Heavy metal concentration in soil from this study	31
	compared to heavy metal in agricultural soils from	
	previous study	