REMOVAL OF Pb(II) ION FROM AQUEOUS SOLUTIONS USING SOURSOP (Annona muricata) LEAF POWDER

MOHD SYOKRI BIN FABIL

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Sciences Universiti Teknologi Mara

JANUARY 2017

17

ABSTRACT

REMOVAL OF Pb(II) ION FROM AQUEOUS SOLUTION USING SOURSOP (Annona muricata) LEAF POWDER.

The potential of *Annona muricata* leaf powder as an adsorbent for the removal of Pb(II) in the aqueous solution was investigated. The *Annona muricata* leaf powder was characterized before the adsorption using Fourier Transform Infrared (FTIR) spectrophotometer and Thermogravimetric analyzer (TGA). The zero point charge for the adsorbent surface was determined and the data shows that the value for pH_{zpc} is 6.3. The effect of pH, sorbent dosage, initial concentration and contact time were investigated. The maximum uptake of Pb(II) was at pH 6 with 64.57 mg/g. The absorption equilibrium was established after 30 minutes. The adsorption of Pb(II) by *Annona muricata* leaf powder increased with its initial concentration. Pseudo-second order showed the best fitting with high correlation ($R^2 = 0.999$). It was found that the adsorption fits well with Langmuir isotherm equation. The maximum adsorption capacity for Langmuir Isotherm was found at 192.31 mg/g. The study suggested that *Annona muricata* could be an efficient sorbent for Pb(II) removal.

TABLE OF CONTENTS

PAGE

ACKNOWLEDGEMENTSiiTABLE OF CONTENTSirLIST OF TABLESvLIST OF FIGURESvLIST OF ABBREVIATIONSvABSTRACTiiABSTRAKv				
СНА	PTER 1 INTRODUCTION			
1.1	Background	1		
1.2	Problem Statement	3		
1.2	Significance of study	4		
1.3	Objectives of study	5		
CHA	PTER 2 LITERATURE REVIEW	7		
2.1	Introduction	7		
2.2	Presence of neavy metal in water	/		
2.3	Plant parts as neavy metal adsorbents	ÿ		
CHA	PTER 3 METHODOLOGY			
3.1	Materials and chemicals	14		
3.2	Methods	14		
CHAPTER 4 RESULTS AND DISCUSSION 2				
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS 3				
CIT	ED REFERENCES	39		
APPENDICES				
CURRICULUM VITAE				

LIST OF FIGURES

Figure	Caption	Page
1	Annona muricata fruit	4
4.1	FTIR Spectrum of Annona muricata leaf powder before	20
	adsorption	
4.2	TGA analysis of Annona muricata leaf powder	22
4.3	pHzpc for Annona muricata leaf powder	
4.4	Effect of pH on the adsorption of Pb(II) using Annona muricata	24
	leaf powder	
4.5	Effect of adsorbent dosage on 25 mg L ⁻¹ of Pb(II) solution	26
4.6	Effect of initial concentration and contact time on the Pb(II)	28
	adsorption	
4.7.1	Pseudo-First Order plots	31
4.7.2	Pseudo-Second Order plots	31
4.8	Adsorption isotherm of different concentrations of Pb(II) at	32
	temperature (298K)	
4.8.1	Langmuir Isotherm plots	34
4.8.2	Freundlich Isotherm plots	35

LIST OF ABBREVIATONS

Pb(II)	:	Lead (II)
Pb(NO ₃) ₂	;	Lead nitrate
NaCl	:	Sodium chloride
HCl	:	Hydrochloric acid
Ni	:	Nickel
Со	:	Cobalt
Cu	;	Copper
Zn	:	Zinc
Cd	:	Cadmium
As	:	Arsenic
Fe	:	Iron/ Ferrum
Cr	:	Chromium
В	:	Baron
Ba	:	Barium
Sr	:	Strontium
Na ⁺	:	Sodium ion
K ⁺	:	Potassium ion
Mg^+	:	Magnesium ion
Ca ²⁺	:	Calcium ion
AAS	:	Atomic Absorption Spectrophotometer
FTIR	:	Fourier transform infra-red
TGA	:	Thermogravimetric Analyze