SYNTHESIS OF ALKYD RESIN FROM OIL PALM TRUNK

AHMAD SUFIAN BIN MOHD ZAKI

Final Year Project Report Submitted in
Partial Fulfilment of the Requirements for the
Degree of Bachelor of Science (Hons.) Chemistry
in the Faculty of Applied Sciences
Universiti Teknologi MARA

JANUARY 2017

ABSTRACT

SYNTHESIS OF ALKYD RESIN FROM OIL PALM TRUNK

Elaeis guineensis is a scientific name for oil palm tree. One of the major crops in Malaysia is oil palm tree. Malaysia is the world's largest producer and exporter of palm oil produce large amount of biomass waste. Plant waste which comes from oil palm industries was determined as new renewable source for synthesis of polymer such as polyol and alkyd resin. In this study, the oil palm trunk was chosen to be investigated for synthesis of alkyd resin. Soxhlet extraction technique was used to extract cellulose by using ethanol and toluene as solvent and then mix with sulphuric acid. The cellulose undergoes glycolysis to obtain glycoside. Glycosides were reacted with refined palm oil by alcoholysis reactions with lithium hydroxide as catalyst to produced polyol. Esterification process was done to produce alkyd resin as the polyol react with phthalic anhydride. The structural confirmation of the prepared resins was determined by Fourier transform infrared. From the spectra, cellulose was not obtained because of the use of concentrated solution, 72% sulphuric acid during the extraction of oil palm trunk cellulose. As the cellulose is not obtained, all the glycoside, polyol and alkyd resin is not obtained.

TABLE OF CONTENTS

ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS ABSTRACT ABSTRAK		PAGE iii iv vi vii viii ix x
СНАР	TER 1 INTRODUCTION	
1.1	Background of Study	1
1.2	Problem Statement	5
1.3	Significance of Study	5
1.4	Objectives of the Study	6
СНАР	TER 2 LITERATURE REVIEW	
2.1	The Classifications of Elaeis guineensis	7
2.2	Production of Cellulose	8
	2.1.1 Cellulose from Oil Palm Tree	9
2.3	Production of Polyol	10
2.4	Production of Alkyd Resin	11
СНАР	TER 3 METHODOLOGY	
3.1	Materials	
	3.1.1 Raw Materials	12
	3.1.2 Chemicals and Reagent	12
	3.1.3 Apparatus	13
	3.1.4 Instruments	14
3.2	Preparation of Sample	
	3.2.1 Extraction of Cellulose from Palm Oil Trunk	14
	3.2.2 Preparation of Glycoside	15
	3.2.3 Synthesis of Polyols	16
	3.2.4 Synthesis of Alkyd Resin	18
3.3	Sample Analysis	
	3.3.1 FTIR Spectroscopy Analysis	19

CHAP	TER 4 RESULTS AND DISCUSSION	
4.1	OPT Cellulose	20
4.2	Glycoside	24
4.3	Polyol	27
4.4	Alkyd Resin	31
СНАР	TER 5 CONCLUSION AND RECOMMENDATIONS	34
CITED REFERENCES		35
APPENDICES		38
CURICULUM VITAE		42

LIST OF TABLES

Table	Caption	Page
1.1	Proximate analysis of biomass of oil palm biomass (%, dry weight) (Bahari,2010)	4
2.1	The classifications of Elaeis guineensis (Pasiecznik, 2008)	7
2.2	The breakdown of wastes from palm oil production of Malaysia in the year 2007 (Sulaiman and Abdullah., 2013)	9
3.2	Synthesis of Alkyd Resin	19
4.1	Summary of FTIR Absorption Band of OPT glycoside obtained	25
4.2	Summary of FTIR Absorption Band of OPT polyol obtained	28
4.3	Comparison of literature spectra of palm oil and experimental palm oil after transesterification (Hahn, 2015)	29
4.4	Summary of FTIR Absorption Band of OPT alkyd resin obtained (Lampman et al., 2011)	32