THERMAL DEGRADATION AND KINETIC ANALYSIS OF WASTE SAWDUST BIOMASS

NOOR NAJIHAH BINTI MOHD

Final Year Project Report Submitted In Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Chemistry In the Faculty of Applied Sciences Universiti Teknologi MARA

-

JANUARY 2017

ABSTRACT

THERMAL DEGRADATION AND KINETIC ANALYSIS

SAWDUST BIOMASS

Renewable fuel that derived from the plant biomass was the one of the good alternatives to replace the limited and non environmental friendly fossil fuel. The research presents the physical characteristics of sawdust biomass using TGA and ATR- FTIR instrument. In TGA, the degradation of biomass component such as hemicellulose and cellulose occur in two stages that release volatile components. By ATR-FTIR, the volatile components can be determined by interpreting the spectrum peak produced. In the proximate analysis, the moisture content, ash, fixed carbon and volatile matter were calculated as 9.77, 4.01,16.81 and 69.41 wt.% respectively. While, the result that obtained from TG/DTG curve were used for the kinetic analysis sawdust biomass. In this analysis two kinetic model which is Kissinger-Akihira-Sunose (KAS) and Flynn-Wall-Ozawa (FWO) model were used to obtain the activation energy, E_a. From the result, the average of activation energy for FWO model was 63.92 kJ.mol⁻¹ and for KAS was 57.24 kJ.mol⁻¹ were obtained. This result can be compared to the previous research to know the potential of sawdust biomass as renewable fuel

TABLE OF CONTENTS

P	80	e
-		•

AKNOWLEDGEMENT	iii
TABLE OF CONTENT	iv-v
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVATION	viii-ix
ABSTRACT	х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Background of study	1-3
1.2	Problem statement	3
1.3	Objectives of study	4
1.4	Significant of study	4

CHAPTER 2 LITERATURE REVIEW

2.1	Biomass resources	5-6
2.2	Pyrolysis of wood	6-7
2.3	Thermal decomposition and degradation analysis in biomass	8-9
2.4	Proximate analysis	9-10
2.5	Kinetic analysis	10-11
2.6	Sawdust	12-13

CHAPTER 3 METHODOLOGY

3.1	Mater	ials	14
3.2	Equip	ment and Analytical Instrument	14
3.3	Sampl	le Preparation	15
3.4 Physical Characterization			
	3.4.1	Thermogravimatric Analysis (TGA)	15
	3.4.2	Attenuated total reflectance FT-IR	15
3.5	Proximate Analysis		16
	3.5.1	Moisture Content	16
	3.5.2	Volatile Matter	16
	3.5.3	Ash	17
	3.5.4	Fixed Carbon	17
3.6	Kineti	ic Analysis	17-19

	3.6.1	Flynn-Wall-Ozawa (FWO) model	19
	3.6.2	Kissinger-Akahira-Sunose (KAS) model	20
CHA	PTER	4 RESULTS AND DISCUSSION	
4.1	Ther	mogravimetric analysis (TGA)	
	4.1.1	The degradation stage of biomass components	21-24
4.2	Kine	etic analysis	
	4.2.1	Determination of activation energy using FWO	25-28
		and KAS models	
	4.2.2	2 The activation energy analysis	29
4.3	Atte	nuated Total Reflectance FT-IR	30-31
4.4	Prox	timate analysis	32-33
CHA	PTER	5 CONCLUSION AND RECOMMENDATIONS	34-35
CIT	ED RE	FERENCES	36-39

APPENDICES	40-47
CURRICULUM VITAE	48-49

•

LIST OF TABLES

Table	Caption	Page
2.1	Proximate analysis of different type of biomass	10
2.2	Characterization of pine sawdust	12
3.1	The list of equipments analytical instrument used	14
4.1	Two stage obtained from TGA curveat different heating rate	21
4.2	List of activation energy obtained using FWO and KAS models	25-27
4.3	Activation energy produces by different biomass	28
4.4	The range of activation energy in different stage of conversion rate	29
4.5	Typical ATR-FTIR analysis of sawdust biomass	31
4.6	Comparison between experimental dry basis and standard dry basis	32