DETERMINATION OF RADON-222 CONCENTRATION AND EMANATION RATE IN SOIL AT UITM JENGKA, PAHANG USING SOLID STATE NUCLEAR TRACK DETECTOR (SSNTD)

MOHD RUZAINI BIN ROSLI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Science Universiti Teknologi MARA

JULY 2017

ABSTRACT

DETERMINATION OF RADON-222 CONCENTRATION AND EMANATION RATE IN SOIL AT UITM JENGKA, PAHANG USING SOLID STATE NUCLEAR TRACK DETECTOR (SSNTD)

The aim of this study was to determine the domestic outdoor radon-222 concentration and emanation rate in soil at UiTM Jengka and to map radiation rate distribution of radon-222 in UiTM Jengka. This analysis conducted by using CR-39 as SSNTD. Radon gas that emits alpha radiation with high ionization will give some tract (dots). From those dots it could be determine the concentration of radon-222 and emanation rate of radon-222 by using some formula related. The CR-39 were placed in a container and planted in certain 24 places in UiTM Jengka that by using maping technique. The CR-39 were planted in a month and harvested. After that, the CR-39 was etched to ensure that the dots become more visible so that it could be easily counted. Average dots were taken from that we determine the concentration and emanation rate of radon-222. Since that, radon-222 emits alpha particle that could harm our body and effect human health. Since at UiTM Jengka, there is no research conducted, from this research, department of health in Malaysia could get some information about radiation. The concentration of radon-222 in UiTM Jengka are vary from 17.40±4.4 to 200.73±18 Bq/m³ with the average of 67.71±10.27 Bq/m³. The emanation rate of radon-222 in UiTM Jengka varies from 4.647±0.416 to 0.403±0.102 Bqm⁻²day⁻¹ with average 1.56±0.238 Bqm⁻²day⁻¹. Then the isodose map was generated using Surfur 14 software. UiTM Jengka gives low reading and below the action limit but there are certain places that at more than the action limit that need to add some precaution actions. Thus UiTM Jengka is not in any radiological risk.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS			
TAB	TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS ABSTRACT		
LIST			
LIST			
LIST			
ABS			
ABS	TRAK	xi	
СНА	PTER 1 INTRODUCTION		
1.1	Background of study	1	
1.2	Problem Statement	2	
1.3	Significant of study	3	
1.4	Objectives of study	3	
СНА	PTER 2 LITERATURE REVIEW		
2.1	Naturally-Occurring Radioactive Materials (NORM)	4	
	2.1.1 Radon	5	
2.2	Solid-State Nuclear Track Detector (SSNTD)	7	
	2.2.1 CR-39	8	
	2.2.2 LR-115	11	
2.3	Optical Microscope	12	
2.4	Mechanism effect of etching	12	
2.5	Radiological Risk	14	
CHA	APTER 3 METHODOLOGY		
3.1	Materials, apparatus and instrument	15	
3.2	Process flow of the Method	16	
3.3	Sampling point	16	
3.4	Preparation of Sample	18	
3.5	Etching Process	20	
3.6	Radiological Analysis	21	
	3.6.1 Determination of track density using optical microscope	21	
	3.6.2 Calculation for radon gas concentration	22	
	3.6.3 Calculation radon emanation rate in soil	23	

СНА	PTER 4 RESULTS AND DISCUSSION	
4.1	Introduction	24
4.2	Concentration in UiTM Jengka of radon-222	25
4.3	Radon-222 Emanation Rate	28
4.4	Isodose map	31
CHA	APTER 5 CONCLUSION AND RECOMMENDATIONS	33
CITED REFERENCES		
APPENDICES		39
CURRICULUM VITAE		

.

•

.

v

٠

LIST OF TABLES

Table	Caption	Page
3.1	24 selected location to expose CR-39	18
4.1	The radon-222 concentration in UiTM Jengka	26
4.2	Comparisons of radon-222 concentration in Malaysia	28
	and other countries	
4.3	The radon-222 emanation rate in UiTM Jengka	30
4.4	Comparison of radon-222 emanation rate in Malaysia	31
	and other countries	