DETECTION OF CRACK AND CORRELATION BETWEEN PEAK WIDTH AND CRACK PATTERN BY USING EDDY CURRENT

*

NIK MUHAMMAD SYAHIR BIN NIK WI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2017

ABSTRACT

DETECTION OF CRACK AND CORELATION BETWEEN PEAK WIDTH AND CRACK PATTERN

Eddy current testing based on the principles of electromagnetic induction. A magnetic field is developed in and around the conductor when alternating current is applied. Eddy current technique can be used on all materials which can conduct electric to locate surface, subsurface cracks, measurements of the thickness on metallic plates and also non-metallic coatings on test objects. The testing is done by using weld probe on conductive material such as steel to detect any crack or defects in the part of welded steel sample. From the testing, the position and width of the crack can be identifying by analyse the peak of signal. The peak show that there is contribution of small or large defect in the welded sample. Other than that, the value of position and width will determine the place of the crack and how deep the crack on the test object. Crack pattern is different due to the changing in frequency of current running through the coil during the testing. When the frequency is increase, the length of crack pattern will decrease.

TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENTS	ii
TABLE OF CONTENTS	iii
LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF ABBREVIATIONS	vii
ABSTRACT	viii
ABSTRAK	ix

CHAPTER 1 INTRODUCTION

1.1 Background	1
1.2 Problem statement	3
1.3 Significance of study	4
1.4 Objectives	5

CHAPTER 2 LITERATURE REVIEW

2.1 Historical background	6
2.2 Ferro and Non-Ferromagnetic materials	7
2.3 Eddy current	7
2.4 Conductive material for inspection	9
2.5 Welded sample	9
2.6 Lack of fusion (LOF)	10
2.7 Probe design and defect detection	10
2.8 Previous Research	11

CHAPTER 3 METHODOLOGY

13
13
14
15
15
17
18
18
18

CHAPTER 4 RESULT AND DISCUSSIONS

4.1 Calibration block	22
4.2 Determination of peak of test sample	23
4.3 Determination of crack pattern	25

CHAPTER 5 CONCLUSION AND RECOMMENDATIONS	28
CITED REFERENCES	30
CURRICULUM VITAE	34

LIST OF TABLES

Table	Caption	Page
4.1	The value of position and width for test sample	25