ADSORPTION KINETICS AND THERMODYNAMICS OF DYE ONTO LAYERED DOUBLE HYDROXIDE (LDHs)

NURUL IZNI KAIRI

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor Science (Hons.) Applied Chemistry in the Faculty of Applied Sciences Universiti Teknologi MARA

MAY 2010

The Final Year Project Report entitled "Adsorption Kinetics and Thermodynamics of Dye Onto Layered Double Hydroxide (LDHs)" was submitted by Nurul Izni Kairi, in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry, in the Faculty of Applied Sciences, and was approved by

11/2

Mrs. Siti Mariam Sumari Supervisor B.Sc. (Hons.) Environmental Technology Faculty of Applied Sciences Universiti Teknologi MARA 40450 Shah Alam Selangor

Miss Sabrina Yahya Project Coordinator B.Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 40450 Shah Alam Selangor

Dr Siti Halimah Sarijo Head of Programme B.Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 40450 Shah Alam Selangor

Date: 25 05 2010

ACKNOWLEDGEMENTS

In the name of Allah, the most Merciful and the most Gracious.

I would like to express my gratitude for the blessings which has give me the strength to complete this proposal within a given time. My heartfelt thank to my supervisor, Mrs. Siti Mariam Sumari who has provided me her full commitment, supervision and tons of guidance. Her trust and patient towards me is kindly appreciated. I would also like to convey my appreciation towards Ms. Mazlin Mohamed and my friends who have given me so much support and help. A bouquet of thanks to my parents and families for being supportive and for their endless emotional support and for their sacrifices to ensure my success in every single thing that I do. Without them, I could not have completed this project. My sincere thanks to all of the people who helped me.

Nurul Izni Kairi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vi
LIST OF TABLES	vii
LIST OF ABBREVIATIONS	viii
ABSTRACT	ix
ABSTRAK	Х
CHAPTER 1 INTRODUCTION	
	-

1.1	Background and Problem Statement	1
1.2	Significance of study	4
1.3	Objectives	4

CHAPTER 2 LITERATURE REVIEW

2.1	History of layered double hydroxide (LDHs)	. 6
2.2	Layered double hydroxide (LDHs)	7
2.3	Structure of layered double hydroxide (LDHs)	9
2.4	Adsorption	11
2.5	Kinetics of adsorption	13
2.6	Dyes	14
	2.6.1 Classification by solubility (in water)	14
	2.6.2 Classification based on method of application	14
	2.6.3 Classification by their chemical constituents	15
2.7	Classification based on method of application	16
	2.7.1 Reactive dyes	16
	2.7.2 Direct dyes	17
	2.7.3 Acid dyes	17
	2.7.4 Azoic dyes	18
2.8	Type of dye used and its molecular structure	19

CHAPTER 3 MATERIALS AND METHODS

3.1	Chemicals	20
3.2	Equipments and instruments	21
3.3	Sample preparation of Layered Double Hydroxide	22
	(Mg-Al-NO ₃)	
3.4	Characterization of MgAINO ₃ -LDH by Powder X-Ray	22
	Diffractometer (XRD)	
3.5	Characterization of MgAlNO ₃ -LDH by Field Emission	23
	Scanning Electron Microscope (FESEM)	

ABSTRACT

Adsorption Kinetics and Thermodynamics of Dye onto Layered Double Hydroxide (LDHs)

Hydrotalcites (HTs) were found to have high anionic exchange capacity for the removal of Reactive Black 5 (RB5) which is one of the textile dyes used in the industry. In this study, MgAINO₃-LDH was synthesized by co-precipitation method. Lavered double hydroxides (LDH) is a class of ionic lamellar solids with positively charged layers with two kinds of metallic cations and exchangeable hydrated gallery anions. They are also known as anionic clays or hydrotalcite-like compounds in the name of polytypes of corresponding (Mg-Al) based minerals. Different parameters that affect the adsorption of dye were studied in this experiment which includes the effect of contact time, the effects at different initial concentration, adsorbent dosage, pH and temperature. Equilbrium sorption isotherms and kinetics were also investigated. The kinetic data obtained at different concentrations have been analyzed using pseudo-first order, pseudo-second order kinetic model. The equilibrium data are fitted to the Langmuir and Freundlich isotherm equations. From these, the adsorption efficiency, adsorption energy, adsorption capacity and the rate constant value for the adsorption process is calculated. The temperature thermodynamic parameters like ΔG° , ΔH° and ΔS° are calculated based on the effect of temperature. The results revealed that MgAlNO₃-LDH was a promising sorbent for the removal of reactive black 5 from aqueous solution.