ANALYSIS OF LEAD IN INFANT MILK FORMULA BY DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMMETRIC TECHNIQUE

NURHANIS BINTI ZAINOL ABIDIN

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree Bachelor of Science (Hons.) Chemistry in the Faculty of Applied Science Universiti Teknologi MARA

JULY 2016

ABSTRACT

ANALYSIS OF LEAD IN INFANT MILK FORMULA BY DIFFERENTIAL PULSE ANODIC STRIPPING VOLTAMMETRIC TECHNIQUE

Most of dairy products especially milk are very popular all over the world as a daily consumed by human as the nutritional balance food and has major sources of the nutrients especially for infant in the first six months of life. It is very important to determine the level of Pb content in infant milk formula either it is permissible to be consumed or not for the safety and quality purposed as it is neurotoxin for infants, reduces IO, disables learning abilities and affects nervous system development. According to EC Regulation 446/2001, the limit of Pb in the infant milk formula is 20 µg/L. The differential pulse anodic stripping voltammetric (DPASV) technique using glassy carbon electrode (GCE) as a working electrode and acetate buffer at pH 4.6 as a supporting electrolyte has been proposed to be developed. The experimental voltammetric parameters were optimized in order to obtain a maximum response with analytical validation of the technique. The optimum parameters were initial potential $(E_i) = -1.0 V$, end potential $(E_f) = -0.2 V$, scan rate (v) = 0.04 V/s, accumulation time $(t_{acc}) = 90$ s, accumulation potential $(E_{acc}) = -1.0$ V and pulse amplitude = 0.075 V. The anodic peak was appeared at -0.5603 V. The curve was linear from 0.05 to 1.0 mg/L ($R^2=0.09992$) with detection limit of 10 µg/L. The precisions in terms of relative standard deviation (RSD) were 4.28%, 2.82% and 0.78% for consecutive three days. The satisfactory recoveries obtained were from 79.26 to 87.75% and 94.72 to 98.88% for respective 0.5 and 1.0 mg/L Pb standard solution in the pre-treated infant milk formula samples. It can be concluded that the developed technique is precise, accurate, rugged, robust, low cost, fast and has potential to be an alternative method for routine analysis of Pb in the infant milk formula.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF ABBREVIATIONS	x
ABSTRACT	xiii
ABSTRAK	xiv

CHAPTER 1 INTRODUCTION

1.1	Infant Milk Formula	1
1.2	Essential and Non-Essential Elements	2
1.3	Sources of Lead (Pb) Contamination in Infant Milk Formula	3
1.4	Health Effects of Lead (Pb) to Human Health	4
1.5	Recommendation Intake of Pb in Infant Formula	4
1.6	Problem Statement	6
1.7	Significant of Study	7
1.8	Objectives of Study	8

CHAPTER 2 LITERATURE REVIEW

2.1	Manuf	Manufacturing of Infant Milk Powder			
2.2	Analyt	Analytical Methods for Pb Analysis			
2.3	Voltan	Itammetric Determination of Pb in Infant Milk Formula			
2.4	Other A	Other Analytical Methods for Pb Determination in Milk Samples			
2.5	Voltammetric Technique			16	
	2.5.1	Differential Pulse Voltammetry Technique			
	2.5.2 Instrumentation of Voltammetric Measurement				
		2.5.2.1	Working Electrode (WE)	17	
		2.5.2.2	Reference Electrode (RE)	18	
		2.5.2.3	Auxiliary Electrode (AE)	19	

CHAPTER 3 METHODOLOGY

3.1	Materials			20	
	3.1.1	.1.1 Instrumentations			20
	3.1.2	Equipment and Apparatus			21
	3.1.3	Chemical a	and Reagent	8	21
3.2	Methods				22
	3.2.1	Reagents and Chemical Preparation			
		3.2.1.1	Lead (Pb) Standard Solution 2		
		3.2.1.2	Reagents		22
		3.2.1.3	Acetate Bu	iffer	22
		3.2.1.4	Sodium Hy	droxide (NaOH) Solution, 0.1 M	23
		3.2.1.5	Hydrochlo	ric Acid (HCl) Solution, 0.1 M	23
	3.2.2	General Pr	ocedure for	Voltammetric Technique Analysis	23
	3.2.3	Differentia	d Pulse Strip	pping Voltammetry for Pb Analysis	24
		3.2.3.1	Method Op	otimization	24
			3.2.3.1a	Effect of Accumulation Time (tacc)	24
			3.2.3.1b	Effect of Scan Rate (v)	24
			3.2.3.1c	Effect of Accumulation Potential	24
				(E _{acc})	
			3.2.3.1d	Effect of Pulse Amplitude	25
		3.2.3.2	Method Va	lidation	25
			3.2.3.2a	Linearity	25
			3.2.3.2b	Limit of Detection (LOD) and	25
				Limit of Quantification (LOQ)	
			3.2.3.2c	Precision and Repeatability	26
			3.2.3.2d	Accuracy	26
			3.2.3.2e	Ruggedness	26
			3.2.3.2f	Robustness	27
	3.2.4	Lead (Pb) Determination in the Infant Milk Formula			27
		3.2.4.1	Samples C	ollection and Pre-treatments	27
		3.2.4.2	Recovery of	of Pb Standard Solution in the Infant	28
			Milk Form	ula	
		3.2.4.3	Determinat	tion of Pb Content in the Infant Milk `	28
			Formula		

CHAPTER 4 RESULTS AND DISCUSSION

Optimization of Instrumental Condition			
4.1.1	Effect of Accumulation Time (tacc)	29	
4.1.2	Effect of Scan Rate (v)	30	
4.1.3	Effect of Accumulation Potential (Eacc)	31	
4.1.4	Effect of Pulse Amplitude	32	
4.1.5	Summary of the Overall Optimization Procedure	33	
	Optimi 4.1.1 4.1.2 4.1.3 4.1.4 4.1.5	 Optimization of Instrumental Condition 4.1.1 Effect of Accumulation Time (tacc) 4.1.2 Effect of Scan Rate (v) 4.1.3 Effect of Accumulation Potential (Eacc) 4.1.4 Effect of Pulse Amplitude 4.1.5 Summary of the Overall Optimization Procedure 	

4.2	Calibration Curve of Pb and Validation of the Developed Method			
	in Acetate Buffer Solution at pH 4.6			
	4.2.1	Calibration Curve of Lead (Pb)	34	
	4.2.2	Determination of Limit of Detection (LOD) and Limit	35	
		of Quantification (LOQ)		
4.3	Validation of the Developed Method			
	4.3.1	Precision and Repeatability	36	
	4.3.2	Accuracy	38	
	4.3.3	Ruggedness	40	
	4.3.4	Robustness	41	
	4.3.5	Recovery Studies of Pb Standard Solution in Infant Milk	43	
		Samples		
	4.3.6	Voltammetric Determination of Pb in Infant Milk	45	
		Formula Samples		

CHAPTER 5 CONCLUSION AND RECOMMENDATION

5.1	Conclusion	48
5.2	Recommendations	49
CITI	ED REFERENCES	50
APP	ENDICES	55
CUR	66	