REMOVAL OF ARSENIC (V) FROM AQUEOUS SOLUTION BY USING SILYLATED MCM-41

NURUL ASNYIRAH ROSLAN

Final Year Project Report Submitted in Partial Fulfillment of the Requirement for the Degree of Bachelor of Science (Hons.) Applied Chemistry In the Faculty of Applied Sciences Universiti Teknologi Mara

APRIL 2010

This Final Year Project Report entitle "Removal of Arsenic (V) From Aqueous Solution by Using Silylated MCM-41" was submitted by Nurul Asnyirah Roslan, in partial fulfillment of the requirements for the Degree of Bachelor of Science (Hons.) Applied Chemistry, in the Faculty of Applied Sciences and was approved by

Miss Nurul Izza Taib Supervisor B. Sc. (Hons) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 40450 Shah Alam Selangor

Miss Sabrina M. Yahaya Co-Supervisor B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti teknologi MARA Selangor

Miss Sabrina M-Yahaya Project Coordinator B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti teknologi MARA 40450 Shah Alam Selangor

Dr. Siti Halimah Sarijo Head of Programme B. Sc. (Hons.) Applied Chemistry Faculty of Applied Sciences Universiti Teknologi MARA 40450 Shah Alam Selangor

Date: 25/5/2010

ACKNOWLEDGEMENTS

Upon completion of this project, I would like to express my gratitude to many parties. Thanks to my supervisor, Miss Nurul Izza Taib for understanding, supervision and guidance throughout this project. Thanks also to my co supervisor, Miss Sabrina M. Yahya. I wish to express my special appreciation to Dr. Faezah Salleh, Head of B. Sc. (Hons.) Chemistry Programme for her permission to use the laboratories (MK1 and MK2). I would also like to thank En Khairul, laboratory assistant for helping me throughout this project. I also wish to express my appreciation to all friends who involve in this project. Knowledge and experiences gain during this project will be shared with others so that people able to understand and apply knowledge in future.

Nurul Asnyirah Roslan

TABLE OF CONTENTS

PAGE	
------	--

ACKNOWLEDGEMENTS	iii
TABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	vii
LIST OF ABBREVIATION	viii
LIST OF APPENDICES	ix
ABSTRACT	х
ABSTRAK	xi

CHAPTER 1 INTRODUCTION

1.1	Background of study	1
1.2	Problem statement	3
1.3	Objectives	4
1.4	Significant Study	5

CHAPTER 2 LITERATURE REVIEW

2.1	Arsenic	6
2.2	Mesoporous Molecular Sieves	6
	2.2.1 Advantages and drawback of MCM-41	8
2.3	Modification of mesoporous silicas	9
2.4	Effort to develop adsorbent for removal of heavy metal ions	11
2.5	Adsorption Isotherm	12
	2.5.1 Freundlich	12

CHAPTER 3 METHODOLOGY

3.1	Chemicals	14
3.2	Synthesis of MCM-41	14
3.3	Modification of MCM-41	15
3.4	Characterization Techniques	18
	3.4.1 Fourier transform infrared spectroscopy (FTIR)	18
3.5	Adsorption Study or Technique	18
	3.5.1 Induced Coupled Plasma-Optical Emission Spectroscopy	18
	(ICP-OES)	
3.6	Optimization Studies	19
	3.6.1 Effect of pH	19
	3.6.2 Effect of contact time at different initial time concentration	20
	of arsenic	

ABSTRACT

OPTIMIZATION STUDIES ON ARSENIC (V) REMOVAL BY USING SILYLATED MCM-41

In this study, MCM-41 was synthesized by using cetyltrimethylammonium bromide (CTAB) as structure directing surfactant, functionalized with trimethylchlorosilane and used as adsorbent for the toxic metal ions i.e. arsenic (V) in aqueous solution. The synthesized and functionalized MCM-41 was characterized using Fourier Transform Infra Red (FTIR). The Induced Coupled-Plasma (ICP-OES) was applied in optimization study for detection of arsenic (V) in aqueous solution which including effect of pH, effect of contact time at different initial concentration, effect of adsorbent dosage and effect of temperature. Results demonstrate that organosilane functionalized MCM-41has low adsorption capacity for arsenic since it can only remove less than 50 % of arsenic in aqueous solution. The highest amount of arsenic adsorbed was 50.56 % in 50 mg/L of arsenic concentration after 2 hours of the test in pH 7 under stirring condition.