CHEMICAL COMPONENTS FROM BARK OF GARCINIA MANGOSTANA L.

NURULHUDA BINTI RUSELI

Final Year Project Report Submitted in Partial Fulfillment of the Requirement for the Degree of Bachelor Science (Hons.) Chemistry In the Faculty of Applied Sciences Universiti Teknologi MARA

ABSTRACT

CHEMICAL COMPONENTS FROM BARK OF GARCINIA MANGOSTANA L.

Experiment was conducted on bark of Garcinia mangostana which belong to the family Clusiaceae found throughout in the tropical region of the entire world. This genus of species contain varies of medicinal benefit such as anti-cancer, antimicrobial and anti-imflammatory. Several objectives have been set up for this experiment which is first to extract and isolate the chemical constituents from bark of Garcinia mangostana L., meanwhile for the second one is to identify and elucidate the structure of the compounds by using spectroscopic methods. Experiment on the isolation from bark of Garcinia mangostana through a series of column chromatography have resulted on the isolation of three prenylated xanthones, α -mangostin, β -mangostin and β -hydroxycalabaxanthone. All of these structures were established by spectroscopic analysis which included 1D NMR, MS techniques and comparing with previous data.

TABLE OF CONTENTS

		Page	
ACK	NOWLEDGEMENTS	i	
TAB	TABLE OF CONTENTS		
	LIST OF TABLES LIST OF FIGURES		
LIST			
LIST	LIST OF ABBREVIATIONS		
	TRACT	ix	
ABS	TRAK	x	
CII	APTER 1 INTRODUCTION		
1.1	Background of study	1	
1.1	Botanical aspect of Garcinia Mangostana L.	2	
1.4	1.2.1 Family of Clusiaceae	2	
	1.2.2 The Genus Garcinia	2	
	1.2.3 The Species Garcinia Mangostana L.	4	
1.1	Problem Statement	5	
1.2	Significant of Study	6	
1.3	Objective of Study	6	
СНА	PTER 2 LITERATURE REVIEW		
2.1	Chemical Components in Garcinia Mangostana L.	7	
	2.1.1 Previous study on xanthones	7	
2.2	Biological activities of Garcinia species	18	
	PTER 3 METHODOLOGY		
3.1	Plant Material	21	
3.2	Instrument	21	
	3.2.1 Infrared Spectroscopy (IR)	21	
	3.2.2 Melting Point	21	
	3.2.3 Nuclear magnetic Resonance (NMR)	22	
2.2	3.2.4 Ultra Violet (UV)	22	
3.3	Chromatographic Method	22	
	3.3.1 Column Chromatography	22	
2.4	3.3.2 Thin Layer Chromatography	22	
3.4	Dyeing reagents for TLC	23	
2 5	3.4.1 iron (III) Chloride Solution	23	
3.5	Extraction and isolation of chemical Composition from Bark of Garcinia mangostana L.	23	
	3.5.1 Isolation of α-mangostin	23	

3.5.2 Isolation of β-mangostin	25
3.5.3 Isolation of 9-hydroxycalabaxanthone	26
CHAPTER 4 RESULT AND DISCUSSION	
4.1 Isolation of Chemical constituents from Garcinia mangostana L.	28
4.1.1 Characterization of α-mangostin	29
4.1.2 Characterization of β-mangostin	36
4.1.3 Characterization of 9-hydroxycalabaxanthone	44
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS	51
CITED REFERENCES	
APPENDICES	56
CURRICULUM VITAE	58

LIST OF TABLES

Table	Caption	Page
4.1	¹ H NMR (400 MHz, CDCl ₃) and ¹³ C NMR (100 MHz, CDCl ₃). Assignments of α-mangostin (13)	31
4.2	1H NMR (400 MHz, CDCl ₃) and ^{13}C NMR (100 MHz, CDCl ₃). Assignments of β -mangostin (10)	38
4.3	¹ H NMR (400 MHz, Me ₂ CO-d ₆) and ¹³ C NMR (100 MHz, Me ₂ CO-d ₆) Assignments of 9-hydroxycalabaxanthone (34)	46