ISOLATION, CHARACTERIZATION AND DETERMINATION OF CELL CONCENTRATION IN SILICATE PRODUCING BACTERIA

AINUL ASYWANIE MISLAN

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Biology in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2017

ABSTRACT

ISOLATION, CHARACTERIZATION AND DETERMINATION OF CELL CONCENTRATION IN SILICATE PRODUCING BACTERIA

Silicate producing bacteria play an efficient role in soil by solubilizing the insoluble forms of minerals like magnesium trisilicate that exist in earth's crust. A total of five different bacteria were obtained and one of the isolated bacteria from bauxite soil sample known as the B1 bacteria was characterized by morphological observation, biochemical identification, screened for the solubilization of silicate on silicate medium besides the effect of cell concentration in enhancing the silicate absorption also being evaluated. All the five bacterial isolates were capable in solubilizing the insoluble minerals in medium. The most clear solubilization zone was observed in B1 and ST5 including the positive control (Bacillus sp.). The results show that B1 and ST5 give clear zone of solubilisation. B1 is Gram positive, aerobic, rod shape with endospore and capsule. ST5 is Gram negative, facultative anaerobic, rod in shape with endospore. Both are acid production and both exhibit the similar colony characteristics to silicate group bacteria. The biochemical tests indicate that the bacterial isolates are similar to genus Bacillus. The capability of bacterial isolates (B1 and ST5) to have absorbed silica to its cell wall by different concentration of bacterial cell which ranged from the optical density of 0.5, 1.0 and 1.5 shows there are no significance effect of different cell concentration at $p \le 0.05$ neither on silicate absorption nor weight of pelleted cell. B1 with the absorption of silicate up to 44.5 mM is the most prominent candidate to be silicate producing bacteria. The capability of silicate bacteria to consolidate sand can be use in ecological engineering purpose in the future and leading to biomineralization.

TABLE OF CONTENTS

		PAGE iii	
ACKNOWLEDGEMENTS			
	TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES		
LIST OF ABBREVIATIONS ABSTRACT			
		ix	
ABS	ГКАК	х	
CHA	PTER 1: INTRODUCTION		
1.1	Background Study	1	
1.2	Problem Statement	3	
1.3	Significance of the Study	4	
1.4	Objectives of the Study	5	
СПА	PTER 2: LITERATURE REVIEW		
2.1	Silica	c	
2.1		6	
	2.1.1 Properties of Silica 2.1.2 Silicification	6	
	2.1.2 Shiencarion 2.1.3 Weathering process	7 8	
	2.1.4 The relationship between silica and bacteria	° 9	
2.2	Interaction between Soil and Microorganism	10	
2.2	2.2.1 Soil	10	
	2.2.2 Microorganisms	11	
	2.2.3 Potential thermophilic bacteria in producing silicate	13	
2.3	Correlation of Concrete Performance with Silicate Bacteria	14	
2.5	2.3.1 Significance of concrete	14	
	2.3.2 Causes of concrete deterioration	15	
	2.3.3 Improvement of concrete durability by bacterial mineral	17	
	precipitation		
CHA	PTER 3: METHODOLOGY		
3.1	Materials	20	
	3.1.1 Raw materials	20	

3.1.1 Kaw materials	20
3.1.2 Chemicals	20
3.1.3 Apparatus	21
Methods	21
3.2.1 Sample collection	21
3.2.2 Bacteria isolation	22

iv

3.2

	3.2.3 Bacteria screening for potential silicate bacteria	22	
	3.2.4 Colony and cellular morphology characteristic of bacteria	23	
	3.2.5 Biochemical Test	24	
	3.2.6 Determination of the cell concentration	25	
	3.2.7 Incubation of bacteria	26	
3.3	Statistical Analysis	26	
CHAP	TER 4: RESULTS AND DISCUSSION	14	
4.1	Bacteria isolation and screening	27	
4.2	Colony and cellular morphology characterization	. 33	
4.3	Biochemical test for isolated bacteria	37	
4.4	Silica absorption	39	
CHAP	TER 5: CONCLUSION AND RECOMMENDATIONS	45	
CITED REFERENCES			
APPE	APPENDICES CURRICULUM VITAE		
CURR			

v

×.

LIST OF TABLES

TABLE	TITLE	PAGE
2.1	Role of soil microbes in provisioning and regulating services provided by soil ecosystems	12
2.2	Cultural and microscopical characteristics of silicate bacteria	14
4.1	Zone solubilisation of selected bacteria	30
4.2	Colony morphology of bacteria on LB agar medium	34
4.3	Colony morphology of bacteria on B&R agar medium	34
4.4	Cellular morphology of bacteria	35
4.5	Biochemical test of bacteria	37
4.6	Reduction of silica concentration by the different concentration	43
4.7	Weight of pelleted cells with the different concentration of bacteria	44