PHYTOCHEMICAL SCREENING AND ANTIMICROBIAL ACTIVITIES OF Strobilanthes crispus AGAINST SELECTED BACTERIA

NURFARAHIN BINTI MUHAMAD KAMARAZZAMAN

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Biology in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2017

ABSTRACT

PHYTOCHEMICAL SCREENING AND ANTIMICROBIAL ACTIVITIES OF Strobilanthes crispus AGAINST SELECTED BACTERIA

Strobilanthes crispus also known as "Pokok pecah kaca" is a local herbs plant belong to family Acanthaceae. Synthetic drug had given the drawback and herbs plant can replaced the drug in term of medication. The leaves were selected because of its variety benefits in traditional folk medicine to treat diabetes and anticancer treatment. This study was done to determine the antimicrobial activity against Gram Positive bacteria which were Staphylococcus aureus and Bacillus subtilis, and Gram Negative bacteria which were Klebsiella pneumoniae and Pseudomonas aeruginosa. This study also wants to investigate the phytochemical compound that present in leaves of S. crispus. The minimal inhibitory concentration (MIC) also been carried out. The antimicrobial activity of S. crispus leaves extract against selected bacteria was tested at different concentrations using disc diffusion method. Identification of the phytochemical compound was determined through phytochemical screening. In methanol extract, the highest antimicrobial activities were at 400mg/ml concentration against *P.aeruginosa* with 12.67 mm of inhibition zone while, the lowest was against K.pneumoniae with 8.66 mm of inhibition zone at 200mg/ml concentration. The leaves extract of S.crispus in hexane solvent give no inhibition zone at all concentration in this study. The phytochemical screening showed positive result for the presence of flavonoid and saponins in both leaves extract. The MIC for methanol extract was determined at 25mg/ml against P.aeruginosa. In conclusion, S.crispus leaves extract showed the best potential to inhibit P.aeruginosa at 400mg/ml concentration. Further investigation should be conducted on other species of bacteria using other part of this plant.

TABLE OF CONTENTS

ACK	NOWLEDGEMENTS	PAGE iii
TAB	iv	
LIST	vi	
LIST	vii	
LIST	ix	
ABSTRACT		x
ABS	FRAK	xi
CHA	PTER 1: INTRODUCTION	
1.1	Background Study	1
1.2	Problem Statements	3
1.3	Significance of the Study	4
1.4	Objectives of the Study	6
CHA	PTER 2: LITERATURE REVIEW	
2.1	Strobilanthes crispus	7
2.2	Extraction	8
	2.2.1 Solvent extraction	9
	2.2.2 Properties of Methanol	10
2.3	Antimicrobial Activity	11
	2.3.1 Bacteria	11
	2.3.2 Properties of Bacteria	12
	2.3.3 Gram positive Bacteria	13
	2.3.3.1 Staphyloccus aureus	13
	2.3.3.2 Bacillus subtilis	14
	2.3.4 Gram-negative Bacteria	14
	2.3.4.1 Klebsiella pneumoniae	14
	2.3.4.2 Pseudomonas aeruginosa	15
2.4	Phytochemical Screening	15
	2.4.1 Function of different class of phytochemical	16
	2.4.2 Standard method of phytochemical screening	17

CHAPTER 3: METHODOLOGY 3.1 Materials

Materials	18
3.1.1 Raw Materials	18
3.1.2 Chemicals	18
3.1.3 Apparatus	18

3.2	Methods	19
	3.2.1 Collection of sample	19
	3.2.2 Extraction of plant material	19
	3.2.3 Media preparation	20
	3.2.4 Phytochemical screening of S. crispus leaves extract	
	3.2.4.1 Detection of alkaloids (Mayer's test)	20
	3.2.4.2 Detection of flavonoids (Sodium hydroxide test)	20
	3.2.4.3 Detection of tannins (Ferric chloride test)	20
	3.2.4.4 Detection of terpenoids (Sulphuric acid test)	21
	3.2.4.5 Detection of saponin (Foam test)	21
	3.2.4.4 Detection of glycosides (Modified borntrager's test)	21
	3.2.5 Antimicrobial susceptibility test	22
	3.2.5.1 Preparation of inoculum	22
	3.2.5.1.1 Growth method	22
	3.2.5.2 Disc diffusion method	22
	3.2.5.3 Minimum Inhibition Concentration (MIC)	23
	3.2.6 Statistical analysis	24

CHAPTER 4: RESULTS AND DISCUSSION

4.1	Extraction of Strobilanthes crispus	25
4.2	The Phytochemical Screening	26
4.3	Type of Antimicrobial Susceptibility Test	29
	4.3.1 Disc diffusion	29
	4.3.2 Minimum Inhibitory Concentration (MIC)	40
4.4	Statistical Analysis	44

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 45

CITED REFERENCES	47
APPENDICES	52
CURRICULUM VITAE	60

LIST OF TABLES

TABLE	TITLE	PAGE
4.1	The percentage yield of solvent extract	26
4.2	Phytochemical screening of the S. crispus leaves extract	27
4.3	Inhibition zones of methanol and hexane extract concentration	31
4.4	The different bacteria at each concentration toward inhibition	36
	zone	
4.5	MIC of methanol extract against for B. subtilis, S. aureus,	41
	P.aeruginosa and K. pneumoniae	