UNIVERSITI TEKNOLOGI MARA

DETERMINATION OF UNDERGROUND PIPE DEPTH AT DIFFERENT TYPE OF SOIL USING HIGH AND LOW FREQUENCY

AHMAD NURUDDIN BIN MOHD

Thesis submitted in fulfillment of the requirements for the degree of Bachelor Science of Geomatics (Hons)

Faculty of Architecture, Planning and Surveying

July 2017

AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student Student I.D. No.	:	Ahmad Nuruddin Bin Mohd 2013752085
Stutent I.D. 140.	•	Bachelor of Surveying Science and Geomatics (Hons)
Programme	:	- AP220
Faculty	1	Architecture, Planning & Surveying
Thesis/Dissertation Title	:	Determination of Underground Pipe Depth at Different Type of Soil Using High and Low Frequency
Signature of Student	:	
Date	:	July 2017

ABSTRACT

This study examined to identify the depth of pipe at different type of soil by using different frequency. The frequency for this research were 250MHz and 800MHz antenna. Accuracy was a main factor to penetrate the underground utility. Ground Penetrating Radar was an interesting measurement technique for mapping underground surface. GPR using different frequency which were 250MHz and 800Mhz used to scanning underground utilities at different type of soil. Beside that, the research was helping by software 2D Reflex for the data collection, data processing and analysing the outcome result. The depth was known before scanning and compare between actual depth with the observation depth from GPR given. The data must be do the correction by using software cause by the other factor such as noise. After do the process in software, the true depth will appear. If the higher of the antenna, the penetration was shallower the depth of penetration. The actual depth had been measure by using conversional method which were measure using tape and levelling method. The result show the suitable frequency that good to use for utilities underground was 250MHz because the frequency can penetrate deeper depth which was more than 1 metre depth. The GPR antenna more can penetrate to both of soil but the sand soil much more detected pipe. Lastly, apart from the aim study was to The aim of this study is to analyse the good frequency for depth measurement of buried pipe from different type of soil, it was also done in intention to help other surveyor to get the quality of accuracy by using this research.

TABLE OF CONTENTS

CONFIRMATION BY PANEL OF EXAMINERS	i
AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF SYMBOLS	xi
LIST OF ABBREVIATIONS / NOMENCLATURE	xii
CHAPTER ONE : INTRODUCTION	1
1.1 BACKGROUND OF STUDY	1
1.2 RESEARCH GAP	4
1.3 PROBLEM STATEMENT	7
1.4 AIM	7
1.5 OBJECTIVE OF STUDY	7
1.6 RESEARCH QUESTION	7
1.7 METHODOLOGY	8
1.8 SCOPE OF LIMITATION	10
1.8.1 Study Area	10
1.8.2 Depth	11
1.8.3 Type of Frequency	12
1.9 SIGNIFICANT OF STUDY	13
1.10 STRUCTURE OF THESIS	13
1.10.1 Chapter 1: Introduction	13
1.10.2 Chapter 2: Literature Review	13
1.10.3 Chapter 3: Methodology	14
1.10.4 Chapter 4: Results and Analysis	14
1.10.5 Chapter 5: Conclusion	14
1.11 SUMMARY	14

CHAPTER TWO : LITERATURE REVIEW					
2.1	INTRODUCTION				
2.2	GROUND PENETRATING RADAR (GPR)				
2.3	APPLICATION OF GPR				
2.4	TH	E TYPE OF SOIL	17		
2.4	1.1	Red Sand Soil	17		
2.4	.2	Sand Soil	17		
2.5	DE	PTH PENETRATING	18		
2.6	2.6 TYPE OF FREQUENCY				
2.7 RESOLUTION			21		
2.8 LEVELLING METHOD			23		
2.9	INS	STRUMENT USED	24		
2.9	0.1	Hardware	24		
2.9	.2	Software	25		
CHAPTER THREE : METHODOLOGY			26		
3.1 INTRODUCTION			26		
3.2 METHODOLOGY			28		
3.2	.1	Study Area	30		
3.2.2 Tools and Software		Tools and Software	32		
3.2	.3	Site Location	33		
3.3	DA	TA COLLECTION	35		
3.3	.1	Conversional Method	35		
3.3	.2	MALA GroundVision Software	36		
3.4	DA	TA PROCESSING	40		
3.4	.1	Reflex 2D Software	40		
3.4	.2	The Actual Depth Calculation	45		
3.5	DA	TA ANALYSIS	46		
3.6	SUI	MMARY	47		
CHAPTER	R FO	UR : RESULT AND ANALYSIS	48		
RESUL	RESULTS AND ANALYSIS				
4.1	4.1 INTRODUCTION 48				
4.2	RES	SULTS OF PROCESSING DATA	48		
4.2	.1	The Actual Depth Measurement	48		
4.2	.2	The Result of Reflex 2D Software	50		