WOOD PLASTIC COMPOSITE USING RICE HUSK AT DIFFERENT FILLER LOADING

NUR BALQUIS BINTI ROSLI

This Project Report submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Furniture Technology in the Faculty of Applied Sciences, Universiti Teknologi MARA

January 2016

CANDIDATE'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as reference work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

In the event that my thesis is found to violet the conditions mentioned above, I voluntarily waive the right of conferment of my degree and agree to be subjected to the disciplinary rules and regulation or Universiti Teknologi MARA.

Name of Candidates	: Nur Balquis Binti Rosli
Candidate's Id No	: 2013544917
Program	: Furniture Technology
Faculty	: Applied Science
Thesis Title	: Wood Plastic Composite Using Rice Husk at Different Filler Loading

Signature of Candidate

Date

JANUARY 2016

ABSTRACT

Wood Plastic Composite Using Rice Husk at Different Filler Loading

The properties of wood plastic composite produced from rice husk were ascertained. The effects of different filler loading were determined. The raw materials used in this study were rice husk particle and polypropylene. Polypropylene (PP) was used as a binder and rice husk sawdust as a filler. 5%, 10%, 15%, 30% of sawdust and 95%, 90%, 85%, 70% of polypropylene has been chosen for this study. The objective of the study was to evaluate the effects of the four differences mixture of filler loading with polypropylene on mechanical and physical properties of wood plastic composite. The tests that are carried in this study were bending, tensile, thickness swelling and water absorption. The results obtained showed that the flexural modulus and tensile modulus decrease when the content of sawdust increased. The flexural strength and tensile strength increases when the content of sawdust increased. The flexural strength and tensile strength increased when the content of polypropylene increased. Adding more sawdust in wood plastic composite will result increasing in percentage of water absorption and thickness. So, more polypropylene in wood plastic composite can reduce the water absorption and thickness swelling in wood plastic composite. Water cannot easily absorb in the wood plastic composite. The properties for 15% of sawdust and 85% of polypropylene much better than other filler loading. So, it can used to produce the best quality of wood plastic composite in the future.

TABLE OF CONTENTS

19

APPROVAL SHEET	ii
CANDIDATE'S DECLARATION	
DEDICATIONS	iv
ACKNOWLEDGEMENET	v
TABLE CONTENTS	vi
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF PLATES	x
LIST OF ABBREVIATIONS	xi
LIST OF APPENDICES	xii
ABSTRACT	xv
ABSTRAK	xvi

CHAPTER 1

INTE	RODUCTION	
1.1	Background	1
1.2	Problem Statement	5
1.3	Justification of Study	5
1.4	Limitation of Study	6
1.5	Objectives	7

CHAPTER

2	LITEF	RATURE	EREVIEW	
	2.1	Rice H	usk	8
		2.1.1	Chemical composition of rice husk	10
		2.1.2	Reconstituted Panel from Rice Husk	11
		2.1.3	Potential of Rice Husk in Panel Product	
		Manufa	acturing	12
	2.3	Wood	Plastic Composite	12
		2.3.1	Properties of wood plastic composites	14
		2.3.2	Uses of wood plastic composites	14
		2.3.3	Effect of particle size	15
		2.3.4	Effect of filler loading	15
		2.3.5	Polypropylene	16
		2.3.6	Properties of polypropylene	17
CHAPTER				
3	MATE	RIALS	AND METHODS	
	3.1	Raw M	aterials	18
	3.2	3.2 Flow chart manufacturing for Wood Plastic Composite 19		
	0 0	-		

- Preparation of Raw Material 3.3.1 Screening 3.3

	3.3.2 Drying	20
	3.3.3 Dispersion mixer	20
	3.3.4 Crusher	22
	3.3.5 Pallet	23
	3.3.6 Hot press	24
	3.3.7 Cold press	24
	3.3.8 Board	25
	3.3.9 Testing methods and samples sizes	26
3.4	Panel Testing	27
	3.4.1 Tensile testing	27
	3.4.2 Bending testing	28
	3.4.3 Water absorption	29
	3.4.4 Thickness swelling	30
3.5	Method of Data Analysis	31
3.6	Experimental Designs	32

CHAPTER

4	RESULTS AND DISCUSSION			
	4.1	Introduction	35	
	4.2	Mechanical Strength Properties		
		4.2.1 MOE (flexural modulus)	36	
		4.2.2 MOR (flexural strength)	39	
		4.2.3 Tensile (tensile strength)	41	
	4.3	Physical Strength Properties		
		4.3.1 Water absorption and Thickness swelling	43	
	4.4	Analyses within Board	46	
CHAPTER				

5		CONCLUSIONS AND RECOMMENDATIONS	
	5.1	Conclusions	48
	5.2	Recommendations	49

REFERENCES	51
APPENDICES	54
VITAE	56
PUBLICATION OF THE PROJECT REPORT UNDERTAKING	57
PERMISSION FOR REFERENCES AND PHOTOCOPYING	58