FAILURE OF ADHESIVE OR COHESIVE WITHIN OIL PALM VENEER PLYWOOD BONDED WITH SELECTED RESIN

NUR ZAKIAH MOHD YASIN

This Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of science (Hons.) in Furniture Technology in the Faculty of Applied Sciences Universiti Teknologi MARA

JANUARY 2016

CANDIDATE'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulation of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

In the event that my thesis is found to violet the conditions mentioned above, I voluntarily waive the right of conferment of my degree and agree to be subjected to the disciplinary rules and regulation of Universiti Teknologi MARA.

Name of candidates

: Nur Zakiah Mohd Yasin

Candidate's ID No : 2013992853

Programme

: Bachelor of Science (Hons.) in Furniture Technology

Faculty

Thesis Title

: Applied Sciences

: Failure of Adhesive or Cohesive within Oil Palm Veneer Plywood Bonded with Selected Resin

Signature of Candidate

Date

JANUARY 2016

ABSTRACT

FAILURE OF ADHESIVE OR COHESIVE WITHIN OIL PALM VENEER PLYWOOD BONDED WITH SELECTED RESIN

This study investigated the bond formation of adhesive on to the plywood form oil palm trunk (OPT) veneer. Adhesive used for the study were Urea Formaldehyde (UF), Phenol Formaldehyde (PF) and Polyvinyl Acetate (PVAc). The adhesive spread value was determined through the thickness of veneer. For bending strength the modulus of elasticity (MOE) and modulus of rupture (MOR) are significant at P≤0.05. PF resins have the highest MOE and MOR at 1881.17 MPa and 12.26 MPa respectively. The tensile shear shows strength UF>PF>PVAc. The result is highly significant at P≤0.01 and UF (0.51 MPa) passed the standard JAS 2014 requirement. Lastly wood failure shows a highly significant difference at P≤0.01, indication that covalent bonding and cohesive failure of PF and UF is stronger than PVAc (dipolar). The highest wood failure was PF with 78%.

TABLE OF CONTENTS

	PAGE
APPROVAL SHEET	ii
DEDICATIONS	iii
CANDIDATE'S DECLARATION	iv
ACKNOWLEDGEMENT	V
TABLE OF CONTENTS	vi
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF PLATES	х
LIST OF ABBREVIATIONS	xi
ABSTRACT	xii
ABSTRACK	xiii

CHAPTER

1.0	INTRODUCTION		
	1.1	Background of study	1
	1.2	Adhesive Bonding	3
	1.3	Justification of Study	4
	1.4	Problem Statement	4
	1.5	Objectives	5
	1.6	Research scope	6
	<i>ti</i>		
2.0	LITE	RATURE REVIEW	
	2.1	Introduction	7
	2.2	Plywood	9
	2.3	Resin	9
		2.3.1 Urea Formaldehyde Resin	10
		2.3.2 Phenol Formaldehyde Resin	11
		2.3.3 Polyvinyl Acetate	13
	2.4	Filler	13
	2.5	Industrial Flour	14
	2.6	Theory of Adhesion	14
	2.7	Effects on Bonding	15
		2.7.1 Effects of Surface Preparation	15
		2.7.2 Effects of Bondline Thickness	16
		2.7.3 Adhesive Selection	16
	2.8	History of Oil Palm	16
		2.8.1 The Oil Palm	17
		2.8.3 Utilization of Oil Palm	19
	2.9	Adhesive Bonding	19
		2.9.1 Adhesive and Adhesion	19
		2.9.2 Cohesive bonding	20

MAT	ERIALS AND METHODS	
3.1	Materials and methods	22
3.2	Preparation of Raw Material	24
3.3	Drying	24
3.4	Board Manufacturing	25
	3.4.1 Veneer selection	25
	3.4.2 Glue preparation	26
	3.4.3 Glue Spreading	27
	3.4.4 Cold Press	27
	3.4.5 Hot Press	28
	3.4.6 Sample Cutting and Conditioning	29
3.5	Board Evaluation	31
3.6	Testing	33
	3.6.1 Static Bending Test	33
	3.6.2 Bond Integrity Test	34
	3.6.3 Wood Failure	36
3.7	Collection Data	37
3.8	Statistical Analysis	37

4.0 RESULTS AND DISCUSSION

3.0

4.1	Introduction		
4.2	Properties of the Elaeis palm plywood.		
4.3	Statistical Significance		
	4.3.1	Density	41
	4.3.2	Static Bending Strength	42
		i. The effects of resin on MOR and MOE	
		of oil palm plywood	42
		ii. Modulus of Rupture (MOE)	42
		iii.Modulus of Elasticity (MOR)	44
	4.3.3	Shear Strength Parallel to Grain	45
		i. Wet Shear	46
		ii. Dry shear	47
	4.3.4	Wood Failure	49
		i. Wet wood failure	49
		ii. Dry wood failure	50

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1	Conclusions	52
5.2	Recommendations	53
REFERENCES		
CURRICULUM VITAE		