STRENGTH PROPERTIES OF SINGLE PIN DOWEL JOINT ON OIL PALM LUMBER

SHEIKH MUHAMMAD SHAUQI KAMAL BIN SHEIKH OSMAN

This Project Report Submitted in

Partial Fulfilment of the Requirements for the

Bachelor of Science (Hons) Furniture Technology

In the Faculty of Applied Sciences

Universiti Teknologi MARA

JANUARY 2016

CANDIDATE'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and the results are my own work, unless otherwise indicated or acknowledged as reference work. This thesis has not been submitted to any other academic institution or non-academic for any other degree or qualification.

In the event that my thesis is found violent the conditions mentioned above. I voluntarily waive the right of conferment of my degree and agree to be subjected to the disciplinary rules and regulation of Universiti Teknologi MARA.

Name of Candidates

: Sheikh Muhammad Shauqi Kamal Bin

Sheikh Osman

Candidate's Id No

: 2013508925

Programme

: Bachelor of Science (Hons.) Furniture Technology

Faculty

: Faculty of Applied Sciences

Thesis Title

: Strength Properties of Single Pin Dowel on

Oil Palm Lumber

Candidate Signature

: **JANUARY 2016**

Date

ABSTRACT

STRENGTH PROPERTIES OF SINGLE DOWEL JOINT USING OIL PALM TRUNK

T-shape joints are widely used in furniture part installation. It's commonly applied in chair or desk for its rail or stretcher. The strength of structural part in furniture depends on how strong the joints can absorb the impact or can hold the load for a period of time. To identify the performance of joints it's necessary to study the potential of joints with a specified strength to enhance the weakest joint system. The objective of this research was to study the performance of ioints by using three different diameter sizes (6mm), (8mm), (10mm) and adhesive, Poly Vinyl Acetate (PVAc) and Epoxy. This is to determine either the three size diameter of dowel with different glue, PVAc and Epoxy can give significant effect the (OPT), if these sizes and glue used are significant, it will save the furniture production in terms of is cost. The testing result was analyzed using SPSS. The result analyzed using ANOVA through Duncan's Multiple Range Test (DMRT). The results shows that for both adhesive no significant value for two testing. It was determined when P-value is > 0.05. According to ANOVA, bending test Glue, recorded their P-value are P=0.167 for Maximum Load (2.026) for the tensile P-value are P=0.137 for Maximum load (2.368). For Dowel sizes bending test P-value are P=0.007 for Maximum Load (6.193), P=0.009 for Tensile at Break and Maximum Load (5.851). Based on this result, all dowel size has highly significant strength for all testing compare with adhesive used PVAc and Epoxy not significant, from that used of PVAc on Tshape joint is better because PVAc low price compare to the Epoxy.

TABLE OF CONTENTS

			Page	
APPROVAL SHEET				
CANDIDATE'S DECLARATION				
ACKNOWLEDGEMENT				
TABLE OF	CONT	ENTS	v	
LIST OF TA	BLE9		viii	
LIST OF FIG	SURES	S	ix	
LIST OF PL	ATES		x	
LIST OF ABBREVIATIONS				
ABSTRACT	•		xii	
ABSTRAK			xiii	
CHAPTER				
1.0	INTRODUCTION			
	1.1 1.2 1.3 1.4 1.5	Justification	1 3 4 6 7 8 8	

2.0	LITE	LITERATURE REVIEW				
	2.1	Properties of Oil Palm Trunk 2.1.1 Oil Palm properties	9 9			
	2.2	Butt-joint	9			
	2.3	Dowel	10			
		2.3.1 Uses of dowel	11			
	2.4	2.3.2 Dowel reinforced butt-joint Polyvinyl Acetate (PVAc)	12 13			
	2.5		13			
	2.6	Testing Standard	14			
3.0	MAT	ERIALS AND METHODS				
	3.1	Materials	15			
	3.2	Methods	15			
		3.2.1 Oil Palm Lumber preparation	15			
		i. Material preparation	15			
		ii. Drying process	15			
		iii. Testing procedure	16			
		iv. Data analysis	16			
		3.2.2 Dowels sizes and block wood testingi. Size of dowel	17 17			
		ii. Size of dower	18			
	3.3	Testing	19			
		3.3.1 Tensile testing	19			
		3.3.2 Bending testing	20			
	3.4		21			
	3.5	Experimental Design	22			
.0 RESI	ULTS /	AND DISCUSSION				
	4.1	Adhesion area	23			
	4.2	Adhesive amount	23			
	4.3	Dowel strength	25			
	4.4	ANOVA analysis	26			
	4.5	Comparison between glue toward bending test	26			
	4.6	Comparison between glue toward tensile test	28			