NAIL WITHDRAWAL PROPERTIES ON HYBRID LAMINATION BOARD MADE FROM SESENDOK (ENDOSPERMUM DIADENUM) AND OIL PALM TRUNK (ELAEIS GUINEENSIS)

· By

SITI AISHAH BINTI ABU BAKAR

This Project Report Submitted in Partial of the Requirements for the Degree of Bachelor of Science (Hons.) Furniture Technology in the Faculty of Applied Sciences
Universiti Teknologi MARA

JANUARY 2016

CANDIDATE'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as reference work. This thesis has not been submitted to any other academic institution or non-academic institution for any other degree or qualification.

In the event that my thesis is found to violet the conditions mentioned above, I voluntarily waive the right of conferment of my degree and agree to be subjected to the disciplinary rules and regulation or Universiti Teknologi MARA.

Name of Candidates

Siti Aishah Binti Abu Bakar

Candidate's ID No

2013513971

Programme

Bachelor of Science (Hons) in

Furniture Technology

Faculty

Applied Science

Thesis Title

Nail Withdrawal Properties on

Hybrid

Lamination

Board

Made from

Sesendok (Endospermum diadenum) and Oil

Palm Trunk (Elaeis guineensis)

Candidate's Signature

JANUARY 2016

Date

ABSTRACT

NAIL WITHDRAWAL PROPERTIES ON HYBRID LAMINATION BOARD MADE FROM SESENDOK (ENDOSPERMUM DIADENUM) AND OIL PALM TRUNK (ELAEIS GUINEENSIS)

In this study, withdrawal tests were carried out to determine the holding strength of nails on hybrid lamination board from wood and non-wood species. Sesendok (Endospermum diadenum) and Oil palm trunk (Elais guineensis) were laminated using polyvinyl acetate (PVAc) glue. Sixty distinct samples were included in the study: thirty samples made of three layers, and thirty distinct samples made of five layers were tested and data were determined and compared. The dimensions of the samples were (50 x 50 x100) mm was prepared at ambient room temperature. Carbon metal type nails of sizes diameter and length at 2.9 x 69mm screw shank nail, 2.9 x 65mm ring shank nail, and 2.9 x 64mm common nail were used in the study. The data of withdrawal resistance of three types of nails were represented in maximum load, N. The nails were installed according to ASTM-D 1761 (2012) standards. Results show that the maximum nail withdrawal resistance value was found in screw shank nail for both three and five layer samples. followed by ring shank nails and then smooth shank nails. Between three types of nails, they are highly significant different strength. But, there were no significances different between three and five lavers of samples.

TABLE OF CONTENTS

		Pages
	OVAL SHEET	ji
	IDATE'S DECLARATION	iii
	OWLEDGEMENT	iv
	E OF CONTENTS	v
	OF TABLES	vii
	OF FIGURES	viii
	OF PLATES	ix
	OF ABBREVIATIONS	X
ABST		xi
ABST	RAK	xii
CHAP	TER	
1	INTRODUCTION	
	1.1 General	. 1
	1.2 Problem statement	5
	1.3 Justification of study	6
	1.4 Objective of Study	7
2	LITERATURE REVIEW	
	2.1 General characteristic of Sesendok	8
	2.2 Habitat and Ecology of Sesendok	11
	2.3 Usage of Sesendok	12
	2.4 History of Oil palm	14
	2.5 Usage of oil palm	15
	2.6 Adhesive- Polyvinyl Acetate (PVAc)	16
	2.7 Fastener	18
	2.7.1 Smooth shank nail	18
,	2.7.2 The ring shank nail	19
	2.7.3 The screw shank nail	20
	2.8 Previous studies of nail withdrawal	
	in furniture industry	21
3	MATERIALS AND METHODS	
	3.1 Raw materials	23
	3.1.1 Sesendok	23
	3.1.2 Oil Palm Trunk (OPT)	24
	3.2 Laminating- Adhesive applications	26

	3.3	Nailing	28
	3.4	Materials preparation flowchart	30
	3.5	Experimental Design	31
	3.6	Methodology	32
	3.7	Universal Testing Machine	33
	3.8	Metal jig	33
	3.9	Statistical Analysis	34
	3.10	Data collection	34
4	RES	SULTS AND DISCUSSION	
	4.1	Statistical analysis of nail withdrawal on	35
		3 and 5 layer lamination Sesendok + OPT	
	4.2	The withdrawal strength of three types of nail	36
	4.3	The effect of nail withdrawal strength on layer	38
5	COI	NCLUSIONS AND RECOMMENDATIONS	
	5.1	Conclusions	40
	5.2	Recommendations	42
RE	FEREN	ICES	43
APPENDICES			
CUDDICULUM VITAE			52