UNIVERSITI TEKNOLOGI MARA

THREE-PHASE AC-DC CURRENT INJECTION HYBRID RESONANT CONVERTER (CIHRC) WITH WIRELESS POWER TRANSFER FUNCTION

RAHIMI BIN BAHAROM

Thesis submitted in fulfilment of the requirements for the degree of **Doctor of Philosophy**

Faculty of Electrical Engineering

January 2018

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulation of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Rahimi Bin Baharom
Student I.D. No.	:	2013249428
Programme	:	Doctor of Philosophy (Electrical Engineering) – EE950
Faculty	:	Electrical Engineering
Thesis Title	:	Three-Phase AC-DC Current Injection Hybrid
		Resonant Converter (CIHRC) with Wireless Power
		Transfer Function

Signature of Student	:	
Date	:	January 2018

ABSTRACT

In this thesis, the three-phase AC-DC current injection hybrid (series-parallel) resonant converter (CIHRC) is proposed to achieve a high power factor by injecting highfrequency currents into the three-phase diode bridge rectifier, producing a high frequency modulation signal with only two soft-switched active devices. The hvbrid configuration resonant converter has the desirable characteristics of both series and parallel configurations. As such, the resonant current dependency problem of the typical series configuration circuit topology can be overcome, allowing the control of the output voltage at no-load or small load conditions. With an appropriate design of hybrid resonant circuit and a suitable switching frequency selection, the devices is capable to operate under virtually lossless zero voltage switching (ZVS) conditions allowing reduction in the size of inductive and magnetic components with high frequency operation. The early stage of the research work involved the derivation of detailed description of the steady-state analysis and characteristics of the proposed CIHRC. The test-rig of 1 kW operating at 20 kHz is developed and tested to be in good agreement with the prediction and simulation results. Next, the small-signal model is developed to design the compensator for the output voltage regulation, in which the derivation of a small-signal model is done by considering the converter to consist of two stages; the line-frequency rectifier and high-frequency resonant circuit. The analysis of linefrequency of the three-phase PWM AC-DC converter is based on the standard method. The resulting circuit equations that are expressed in state-space form are then averaged to remove the ripple. The direct and quadrature (d-q) transformation method is adopted to eliminate the time variance in the equations. In order to model the high-frequency resonant stage, the fundamental frequency methods are adopted. To match the line frequency equations of the three-phase PWM AC-DC converter with the highfrequency resonant stage equations, the power balanced relationship for the DC link methods are employed. Then, by considering small perturbations in all variables, the resulting non-linear model is linearised. The small-signal model is used to design the closed loop controller for the proposed three-phase AC-DC CIHRC. Such closed loop controller of the converter is designed based on the classical techniques of linear network and control theory. In addition, the compensator for the output voltage regulation is designed based on the open-loop control-to-output frequency response, the location of poles and also the trade-off between reducing the output voltage ripple and maintaining the high quality input line current. Design of this controller is verified under small signal change in the load, which is implemented by increasing and decreasing the parameters of the load resistor. With the successful application of the small-signal model in the closed-loop control, the output voltage regulation of the CIHRC is achieved. The proposed converter is further modified to operate wirelessly to provide wireless power transfer feature as an example of one of the salient application of CIHRC. High power transfer efficiency of 92 % is obtained showing the feasibility of the converter implementation in the wireless power transfer application whilst maintaining high input power factor. An experimental test-rig is constructed to verify the operation of the proposed system.

TABLE OF CONTENTS

			Page	
CONFIRMATION BY PANEL OF EXAMINERS				
AUTHOR'S DECLARATION				
ABSTRACT				
ACKNOWLEDGEMENT				
TABLE OF CONTENTS			vi	
LIST OF FIGURES				
LIST OF TABLES				
LIST OF SYMBOLS			xix	
LIS	T OF A	BBREVIATIONS	xxi	
CHAPTER ONE: INTRODUCTION				
1.1	Backg	round	1	
1.2	Proble	em Statement	5	
1.3	Objec	tives of Research	6	
1.4	Scope	of Work / Limitation of Research	7	
1.5	Struct	ure of the Thesis	9	
CHAPTER TWO: LITERATURE REVIEW				
2.1	A Rev	view on Three-Phase AC-DC Converter Topologies	11	
	2.1.1	Introduction	11	
	2.1.2	Multipulse AC-DC Converters	12	
	2.1.3	PWM AC-DC Converters	15	
	2.1.4	VIENNA AC-DC Converters	16	
2.2	A Rev	view on Resonant Power Converter	18	
	2.2.1	Introduction	18	
		2.2.1.1 Series Loaded Resonant Power Converter	19	
		2.2.1.2 Parallel Loaded Resonant Power Converter	21	
		2.2.1.3 Hybrid Loaded Resonant Power Converter	23	
	2.2.2	The Need For Resonant Converter	25	

	2.2.3	Switching Condition of Loaded Resonant Power Converter	26
		2.2.3.1 Switching Frequency Below Resonant Frequency	27
		2.2.3.2 Switching Frequency Above Resonant Frequency	29
	2.2.4	Current Injection Technique	30
2.3	A Rev	view on Small-Signal Model and Control of Power Electronic	34
	Conve	erters	
	2.3.1	Introduction	34
	2.3.2	Small-Signal Modelling of Switch-Mode Power Converter	35
		2.3.2.1 Averaging Methods	35
		2.3.2.2 Sampled-Data Techniques	36
		2.3.2.3 Extended Describing Function Method	37
		2.3.2.4 Methods Based on the Fundamental Frequency	38
		Analysis	
	2.3.3	Control Methods for Basic Converter Units	39
	2.3.4	Control Methods for Resonant Converters	40
2.4	A Rev	riew on Wireless Power Transfer	42
	2.4.1	Introduction	42
	2.4.2	Background of WPT	42
	2.4.3	WPT Concept	43
	2.4.4	Inductive WPT Systems	45
	2.4.5	Highly Resonant WPT Systems	45
		2.4.5.1 Resonant	45
		2.4.5.2 Coupled Resonator	47
		2.4.5.3 Advantages of Highly Resonant WPT System	50
	2.4.6	Power Electronics Converter and Control Electronics for WPT	51
		System	
2.5	Concl	usion	53
CH	APTER	THREE: CIRCUIT TOPOLOGY, STEADY-STATE	54
		CHARACTERISTICS AND ANALYSIS OF	
		THE PROPOSED THREE-PHASE AC-DC	
		CIHRC	
3.1	Intro	duction	54

54