

FINITE ELEMENT ANALYSIS OF A LIGHTWEIGHT BOX STRUCTURE

MOHD AMIR BIN BOHARI (2000205598)

A thesis submitted in partial fulfillment of the requirement for the award of Bachelor Engineering (Hons) (Mechanical)

> Faculty of Mechanical Engineering Universiti Teknologi Mara (UiTM)

> > MAY 2003

"I declared that this thesis is the result of my own work except the ideas and summaries which I have clarified their sources. This thesis has not been accepted for any degree and not concurrently submitted in candidature of any degree."

Signed $l_{k/05/2003}$

Mohd Amir Bin Bohari UiTM No. :2000205598

ABSTRACT

A lightweight box with dimension of 1200mm x 400mm x 120mm consisting of 4 ribs, 8 stringers and 2 spar webs was designed and fabricated. The structural behaviors were studied in terms of stress and deflection by theoretical and Finite Element Analysis (FEA). FEA analysis was carried out based on 116 Elements consisting of 60 Shell41 type (for skin and ribs), 8 shell28 (for spar webs), and 48 link8 type (for stringer and spar flank). The structural integrity was tested by measuring the strain of 4 strain and rosette gauges at 5 different locations. The stress values from the theoretical and FEA are in good agreement. Experimental results showed good agreement with the predicted values at locations 1, 3 and 5. However the experimental stresses at location 2 and 4 are deviated by 43 and 84% respectively from the predicted values. Such high deviations indicate a local effect, since location 2 is closed to the rivet and 4 are on the stringer. Meanwhile, location 1 and 3 are on the skin and 5 was the rosette at the web. The experimental deflection values at all loads are significantly deviated from the predicted values. Therefore the theoretical approach has got to be modified by taking several factors such as the effect of the rivet on the geometry and fabrication imperfection into consideration. The experimental values are higher than the predicted values.

TABLE OF CONTENTS

CONTENTS

PAGE TITLE ACKNOWLEDGEMENT ABSTRACT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES

CHAPTER 1 INTRODUCTION

PAGE

1.1 Structu	ural design	1
1.2 Objective of project		2
1.3 Metho	dology	
1.3.1	Analysis of box structure from mechanics of	
	material	3
1.3.2	Finite Element Analysis	3
1.3.3	Determination of deflection and stress of the	
	fabricated lightweight box	3
1.3.4	Comparison of results	3

CHAPTER II THEORITICAL ANALYSIS AND RESULTS

2.1 Structural design and specification	4
2.2 Theoretical analysis of a lightweight box	5
2.3 Stress equation	6
2.4 Determination of second moment of area	6
2.5 Calculation of stress	12
2.6 Calculation of deflection	14

CHAPTER III FINITE ELEMENT ANALYSIS (FEA) AND RESULTS

3.1	3.1 Finite Element Analysis and ANSYS		
3.2	3.2 Basic steps in the finite element method		19
3.3 Finite element modeling			19
	3.3.1	Define element type and material properties	
		options	20
	3.3.2	Creating the model geometry	22
	3.3.3	Apply loads and the solution	24
	3.3.4	Postprocessor phase option	25
3.4 Results		26	
	3.4.1	Stress analysis	26
	3.4.2	Deflection analysis	27

CHAPTER IV EXPERIMENTAL TESTING AND RESULTS

4.1 Introduction	29
4.2 Experiment Apparatus set-up	30
4.3 Strain experiment	32
4.4 Determination of stress	33
4.5 Deflection experiment	35