

DESIGN AND FABRICATION OF ACTIVATED CARBON BASED OF NATURAL GAS VEHICLE CONTAINER

ROAZIAN @ ROEZWAN BIN ABDUL RAHMAN (99300106)

A thesis submitted in partial fulfillment of the requirements for the award of Bachelor Engineering (Hons) (Mechanical)

> Faculty of Mechanical Engineering Universiti Teknologi MARA (UiTM)

> > **SEPTEMBER 2002**

"I declare that this thesis is the result of my own work except the ideas and summaries which I have clarified their sources. The thesis has not been accepted for any degree and is not concurrently submitted in candidature of any degree."

Signed : 33/8/2802.

Roazian @ Roezwan Bin Abdul Rahman (UiTM No : 99300106)

ABSTRACT

The main purpose of this project is to develop the design and fabricate the low pressure adsorb natural gas container. By understand the main property of natural gas and the characteristics of the compress gas, further detail design of the pressure vessels had been developed to give sufficient driving range as a Compress Natural Gas (CNG) and petrol usage vehicle.

The pressure vessels had been designed accordance with Pressure Vessel ASME Code Section VIII Division 1 and are able to withstand pressure up to 130 bars. The pressure vessels is unfired type and also been fixed with thermocouple, temperature controller, pressure relief valve, heating rod and filling valve to meet the design requirement.

This project is based on design and collective information. The main activities of this project are including technical aspects and the design requirement.

From information gathered (Industrial visit + book reading), a discussion is made based to the design requirement and technology involved in Adsorbed Natural Gas (ANG). Finally, conclusions are made on the current status of the ANG technology and its future development.

CONTENTS

ABS	ABSTRACT		
ACŀ	KNOWL	EDGEMENTS	b
CHA	APTER 1	INTRODUCTION	1
CHAPTER 2		OBJECTIVE	3
СНА	APTER 3	B NATURAL GAS	4
3.1	NATU	URAL GAS FUEL OVERVIEW	4
	3.1.1	COMPRESSED NATURAL GAS (CNG)	4
	3.1.2	LIQUEFIED NATURAL GAS (LNG)	4
3.2	NATU	JRAL GAS COMPOSITION	5
3.3	NATU	JRAL GAS FOR VEHICLES	6
	3.3.1	NATURAL GAS FOR VEHICLE APPLICATIONS	7
	3.3.2	WORKING PRINCIPLES OF NATURAL	
		GAS VEHICLES (NGVS)	8
	3.3.3	TYPES OF NATURAL GAS VEHICLES (NGVS)	9
	3.3.4	REFUELING OF NATURAL GAS VEHICLES	9
3.4	NGV	SYSTEM OPERATION & COMPONENT	10
3.5	ADVA	ANTAGES OF NGV	12
СНА	PTER 4	ADSORBED NATURAL GAS	13
4.1	LOW	PRESSURE ADSORBED NATURAL GAS	13

4.2	COMPARISON OF ANG AND CNG	16
4.3	THE ANG STORAGE SYSTEM	17
	4.3.1. THE ADSORBENT	17
	4.3.2. THE STORAGE VESSEL	20
	4.3.3. THE GUARD BED	22
СНА	PTER 5 ACTIVATED CARBON	24
5.1	ACTIVATED CARBON OVERVIEW	24
5.2	HIGH ACTIVITY, HIGH DENSITY GRANULAR	
	ACTIVATED CARBON PROPERTIES	25
5.3	SOURCES OF ACTIVATED CARBON	28
5.4	HOW ACTIVATED CARBON ATTRACTS POLLUTANTS	29
СНА	PTER 6 PRESSURE VESSEL	32
6.1	PRESSURE VESSEL DESIGN	32
	6.1.1. DESIGN CODES	33
	6.1.2. DESIGN PHILOSOPHY	34
	6.1.3. DESIGN CRITERION	35
	6.1.4. DESIGN PRESSURE	36
	6.1.5. DESIGN TEMPERATURE	36
	6.1.6. CORROSION ALLOWANCE	36
	6.1.7. JOINT EFFICIENCY	36
	6.1.8. MATERIAL	37
	6.1.9. TEST OF PRESSURE VESSELS	37
6.2	FUNCTIONAL REQUIREMENT	38
	6.2.1. SHELL	38
	6.2.2. HEAD CAP	39
	6.2.3. LAP JOINT FLANGE	40