UNIVERSITI TEKNOLOGI MARA

RANGE SENSOR BASED LOCAL PATH PLANNING ALGORITHM FOR MOBILE ROBOT IN UNKNOWN STATIC ENVIRONMENT WITH BEACON

WAN AHMAD JAILANI BIN WAN NGAH

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

Faculty of Electrical Engineering

August 2013

ABSTRACT

The Bug algorithm is a local path planning methodology for mobile robot which detects the nearest obstacle as the robot moves towards a target with no or very limited information about the environment. It uses obstacle border as guidance toward the target and at the same time uses sensors to implement obstacle avoidance. During circumnavigating an obstacle, Bug algorithm needs to detect a situation that triggers to leave the current circumnavigating obstacle toward target point. Implementation of Bug algorithm also requires assumption that the localisation for mobile robot is ideal causes the need for ideal sensor and unrealistic for real mobile robots to be implemented in real world. The new approach called PointsBug was developed to avoid the requirement of ideal localisation and try to minimize the use of outer perimeter of obstacle (obstacle border) by looking for a few points on the outer perimeter of an obstacle area as turning point toward target point and as a result reducing duration and distance of mobile robot navigation. PointsBug also avoids the necessity to store any information about previous positions of navigation such as hit point, leaving point and previous position in Bug algorithms family developed by past researches. This causes accuracy in mobile robot localisation is not an important factor for a successful navigation. PointsBug is then compared with TangentBug because it is the best among The Bug Algorithm family using the range sensor for distance, duration, speed and reachability.

ACKNOWLEDGEMENTS

With the Name of Allah, Most Gracious, Most Merciful.

First and foremost, thank to Allah S.W.T for giving me strength and patience to complete my research study.

My deep sense of gratitude is expressed here to Prof Madya Ir Dr Norlida Buniyamin for her valuable supervision, guidance, advice and motivation throughout the period of my work and preparation for this thesis.

Thanks to my family for their unflagging love and support throughout my life and lastly to all my dear friends.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	ij
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREAVIATIONS	xii

CHAPTER ONE: INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	3
1.3	Motivation for Research	3
1.4	Research Objective	6
1.5	Contribution to Knowledge	6
1.6	Scope and Limitation of Research	7
	1.6.1 Scope of the Research	7
	1.6.2 Limitation of the Research	7
1.7	Outline of the thesis	8

CHAPTER TWO: LITERATURE REVIEW

2.1	Mobile Robot	9
	2.1.1 Autonomous Mobile Robot	11
2.2	Motion Planning	14
2.3	Path Planning	15
2.4	Global Path Planning	16
2.5	Local Path Planning	17
	2.5.1 Potential Field	1 9
	2.5.2 Bug Algorithm Family	20

2.6	Conclusion	32			
CHAPTER THREE: RESEARCH METHODOLOGY					
3.1	Introduction	33			
3.2	Overview of Research Methodology	33			
3.3	Research Methodology Flows	34			
3.4	Assumptions of Research Model	35			
3.5	Selection of Simulation Software	36			
3.6	Simulation in the RobotBASIC IDE	38			
3.7	Mobile Robot in RobotBASIC	39			
3.8	Environments Selection	41			
	3.8.1 Circular Obstacle Environment	41			
	3.8.2 Rectangular Obstacle Environment	41			
	3.8.3 Local Minima Environment	41			
	3.8.4 Sankar's Terrain Environment	42			
	3.8.5 Maze-like Environment	43			
	3.8.6 Random Environment	43			
3.9	Selection of Algorithm for Comparison	44			
3.10	Standard Simulation Implementation	46			
3.11	Data and Measurement	46			

CHAPTER FOUR: POINTSBUG ALGORITHM

4.1	Introduction	47
4.2	Algorithm Aim	47
4.3	Problem Description	48
4.4	Equipments and Sensors	48
4.5	Environment	49
4.6	Determination of point within the closest free area of obstacle	50
4.7	Initial Condition and consideration	51
4.8	Mobile robot sensors and behaviour	53
4.9	Execution of Algorithm	54
0	4.9.1 Trap	59
	4.9.2 Navigation Termination	59
4.10	Calculation	59
		vi