UNIVERSITI TEKNOLOGI MARA

SOIL ERODIBILITY OF HETEROGENEOUS RIVER BANK PROFILE TO LATERAL MIGRATION

SAERAHANY LEGORI BINTI IBRAHIM

Thesis submitted in fulfillment of the requirements for the degree of **Doctoral of Philosophy**

Faculty of Civil Engineering

August 2017

ABSTRACT

Lateral migration changes are very complex and complicated processes. There are consistent underlying relationships between lateral migration and other parameters such as soil erodibility, hydraulic and hydrodynamic characteristics, river bank geometry, soil properties, grain or flow resistance, planform characteristics and others. Soil erodibility plays a significant role in streambank erosion and lateral changes. It is a derivative of the physical, geochemical and biological properties and the impact of applied stresses on these derivatives is of primary concern. The controlling forces resisting hydraulic stresses generated by flowing water are a measure of soil erodibility. This study consists of two primary stages. Initially, a newly modified version of the JET device namely Jet Erosion Device (JEd) is fabricated, with improved features and design that facilitates testing in the field and the laboratory. Soil erodibility coefficients are introduced to represent the erodibility of the soils under study. Field data measurements were carried out on 3 rivers where empirical models were developed using data from Selangor River and validated using data from Bernam and Lui rivers and other secondary river data. Analyses have shown high correlations and the parameters were further examined and analysed for the development of a predictive relationship for Jet index, J_i using discrepancy ratio (DR) as the validation method. The second stage of this study investigates the lateral migration characteristics and the related parameters specifically focussing on soil erodibility parameter under study. Primary and secondary data was collected to obtain sufficient amount of information for variables in order to explain the controls on temporal changes of lateral migration. At this stage, Selangor River was selected for the lateral migration rates measurement. Statistical analyses were then conducted using the variables obtained through dimensional analysis to identify the relationship of lateral channel migration with the hydraulics, channel and soil erodibility characteristics. Statistical multiple regression analyses were performed to establish the empirical equation of lateral channel migration based on the selected dependent and independent variables with the incorporation of the soil erodibility parameters. Statistical parameters such as coefficient of determination, R^2 and root-mean-square error (RMSE) percentages were used to aid in the selection of the most appropriate model. The predictive variables selected were based on their ability to explain the variation of lateral channel migration. Once a mathematical model in a form of predictive equation was produced based on the regression of the field data, the results were interpreted and checked against any physical data. This validation process was done with field monitoring data and available secondary data. The analysis concluded that the dimensionless soil erodibility parameter obtained through the JEd experiments on site is most likely show a significant relationship with lateral migration rates.

ACKNOWLEDGEMENT

Alhamdulillah, all praises to Allah for the strength and blessings He had bestowed upon me.

Firstly, I would like to thank my family: my husband, Mohd Fakhree Mansor for his unconditional love, for supporting me spiritually, and just being there for me through thick and thin; my lovely children, Ibrahim, Khadijah, Muaz, Hanzalah, Aisyah and Hamzah for being my pillar of strength. My mother, Safiah, my sisters and my in laws for their love and understanding throughout writing this thesis and my life in general.

I would also like to express my sincere gratitude to my advisor Prof. Ir Dr. Junaidah Ariffin for the continuous support of my Ph.D study and related research, for her patience, motivation, and immense knowledge. Her guidance helped me in all the time of research and writing of this thesis. I could not have imagined having a better advisor and mentor for my Ph.D study.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr. Jazuri Abdullah for his insightful comments and encouragement.

My sincere thanks also go to the technical team from Universiti Selangor (UNISEL) especially Helmy, Rozi, Faizal and Mokhzani for their assistance in the Jet Erosion Device (JEd) fabrication, field data collection and laboratory experiments. Without they precious support it would not be possible to conduct this research.

I thank my fellow colleagues, Azlinda, Duratul, Zamsalwani and Fais for the stimulating discussions, and for all the fun and tears we have had together. Also I thank my close friends, for their endless encouragement and love.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	X
LIST OF FIGURES	xii
LIST OF PLATES	xv
LIST OF SYMBOLS	xvi
LIST OF ABBREVIATIONS	xix
	1
CHAPTER ONE: INTRODUCTION	1
1.1 Introduction	1
1.2 Background of Study	2
1.3 Problem Statement	3
1.4 Objectives	4
1.5 Scope and Limitation of Study	6
1.6 Thesis Structure	7
CHAPTER TWO: LITERATURE REVIEW	9
2.1 Introduction	9
2.2 Factors Governing Soil Erodibility	10
2.3 Soil Erodibility Measurement Methods	16
2.4 Physical Factors Affecting Riverbank Erosion and Lateral Migration	18
2.5 Channel Lateral Migration	19
2.6 Physical Factors Affecting Lateral Migration	21

*

2.6.1	Soil Characteristics	22
2.6.2	Heterogeneous Soil	22
2.6.2	Hydraulics Characteristics	23
2.6.3	Channel Planform Characteristics	24
2.7 Theoretical Background		25
2.7.1	Empirical Equations and Significant Variables of Bank Erosion	
	and Lateral Migration	26
2.8 Conclud	ing Remarks	27
CHAPTER	THREE: RESEARCH METHODOLOGY	40
3.1 Introduc	tion	40
3.2 Research	n Processes	40
3.2.1	Soil Erodibility and Lateral Migration Parameters Identification	·1.
	and Data Acquisitions	41
3.2.2	Relationship of Soil Properties Parameters to Soil Erodibility	41
3.2.3	Validation of Predictive Models of Soil Erodibility and Lateral	
	Migration Rates	42
3.3 Study A	rea	43
3.3.1	Sungai Selangor	43
3.3.2	Sungai Bernam	49
3.3.3	Sungai Lui	50
3.4 Lateral I	Migration Measurements	50
3.4.1	Repeated Vertical Bank Profiling (Channel Cross Sectional Surve	ey)
	and Longitudinal Profile Measurement	51
3.5 Soil Pro	perties Characteristics	52
3.5.1	Soil Properties Testing	52
3.5.2	Soil Investigation Study	56
3.6 Hydraul	ic Geometry	57
3.7 River Cl	nannel Migration Measurement Using Remote Sensing and GIS	58
3.7.1	Total Bankline Change, E	59
3.7.2	Normalized Lateral Movement Rates, N	60
3.7.3	Change in Total Channel Width, dW _{tot}	61
3.7.4	Lateral Migration Rates, M	62

÷