UNIVERSITI TEKNOLOGI MARA

THERMOCLINE: DETERMINATION OF SOUND SPEED PARAMETERS CHANGES AT SUNGAI DINDING, LUMUT, PERAK DURING SPRING TIDE AND NEAP TIDE

MUHAMAD IZZUDDIN BIN HAZALI 2014604094

Thesis submitted to Universiti Teknologi MARA Malaysia in partial in fulfillment of the award for the degree of **Bachelor of Surveying Science and Geomatics (Honours)**

Faculty of Architecture, Planning and Surveying

JANUARY 2018

AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA (UiTM). It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA (UiTM), regulating the conduct of my study and research.

Name of Student	:	MUHAMAD IZZUDDIN BIN HAZALI
Student I.D. No.	:	2014604094
		Bachelor of Surveying Science and Geomatics
Programme	:	(Honours) – AP220
Faculty	:	Architecture, Planning & Surveying
		Thermocline: Determination of Sound Speed Parameters
	:	Changes At Sungai Dinding, Lumut, Perak During
Thesis/Dissertation Title		Spring Tide And Neap Tide
Signature of Student	:	()
Date	:	JANUARY 2018

ABSTRACT

In today's world, there are several issue about thermocline. Thermocline is a layer of water between a hotter layer above and a cooler layer below which has a more quickly rate of decay of temperature than both of the encompassing layers. Thermocline research is one of great significance not only in the academic field but also the production, living and military field. For this research studies is to identify thermocline can be disturb the sound speed parameters such as sound velocity, temperature, pressure, salinity, and density during spring tide and neap tide. There are two objective in this research studies which is to analyze the different value of the sound speed parameters on low and high tide during spring tide and neap tide and also to analyze the differences of thermocline layer between spring tide and neap tide on low and high tide. The study area that has been chosen for this research studies is West Coast in Malaysia which is at Sungai Dinding, Lumut, Perak. There are main data that used for this research studies is the sound speed parameter models in differences water level that relation with tidal observation. The sound speed parameters model data can be provided by using AML Oceanographic X.Series sound velocity profiler (SVP) and tidal reading can be provided by using Veleport 740 tide gauge. Based on the result, the analysis can show the pattern of sound speed parameters on thermocline changes during spring tide and neap tide will be detected and determine by using the image of graph. As example, there are huge difference between on low tide during spring tide and on low tide during neap tide which is during spring tide, thermocline will be detected starting from 1.04 dBar - 1.38 dBar for pressure, 1542.204 m/s - 1542.613 m/s for sound velocity while during neap tide, it starting from 3.47 dBar - 4.26 dBar for pressure, 1543.370 m/s -1543.878 m/s for sound velocity In conclusion, it can show that there are have a different range of thermocline layer at the certain water level during spring tide and neap tide.

Keywords: Thermocline, Tidal, Parameters (velocity of sound, temperature, pressure, salinity and density), Spring Tide, Neap Tide, Sound Velocity Profiler (SVP).

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

TITLE PAGE	
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ABSTRAK	v
ACKNOWLEDGEMENT	vi
TABLE OF CONTENTS	vii - ix
LIST OF FIGURES	x - xii
LIST OF TABLES	xiii - xiv
LIST OF PLATES	XV
LIST OF SYMBOLS	xvi
LIST OF ABBREVIATIONS	xvii

1 INTRODUCTION

1.1	Introduction	1
1.2	Research Background	1 - 2
1.3	Research Questions	2
1.4	Research Gap	2 - 5
1.5	Problem Statement	5
1.6	Aim	6
1.7	Objective	6
1.8	Proposed Methodology	6-8
1.9	Expected Outcome	8
1.10	Significant of Study	8-9
1.11	Structure of Thesis	9
1.12	Summary	10

2 LITERATURE REVIEW

2.1	Introduction	11
2.2	Thermocline	11 - 12
2.3	Sound Speed Parameters In Sound Velocity	
	Profiler (SVP):	
	2.3.1 Velocity of sound	12 - 13
	2.3.1.1 Sound Velocity Determination	13 – 14
	with Empirical Formulas	
	2.3.1.2 Sound Velocity Determination	14
	with Bathythermograph.	
	2.3.1.3 Sound Velocity Determination	14
	with Sound Velocity Profiler (SVP)	
	2.3.1.4 Bar Check Calibration.	14 – 15
	2.3.2 Temperature	16 – 17
	2.3.3 Pressure	17
	2.3.4 Salinity	17 – 18
	2.3.5 Density	18
2.4	Tidal	19 – 22
2.5	Summary	22

3 METHODOLOGY

3.1	Introduction	23
3.2	Overview of the Methodology	23 - 24
3.3	Phase 1 - Research Planning Identification	25 - 27
3.4	Phase 2 - Data Collection	27 - 29
3.5	Phase 3 - Data Processing	30 - 32
3.6	Phase 4 - Results and Analysis	32 - 33
3.7	Summary	33

4 **RESULT AND ANALYSIS**

4.1	Introduction	34
4.2	Changes Of The Sound Speed Parameters On	34