

UNIVERSITI TEKNOLOGI MARA

**COURTYARD AS A PASSIVE
COOLING DESIGN STRATEGY IN
MALAYSIAN LINKED HOUSES**

MOHD RIZA BIN ISMAIL

Thesis submitted in fulfillment
of the requirements for the degree of
Doctor of Philosophy

Faculty of Architecture, Planning & Surveying

September 2016

ABSTRACT

Sixty percent of Malaysians prefer to stay in linked houses for reasons of location, space and aesthetic. Most of these houses are installed with mechanical cooling and air circulating fans for thermal comfort instead of a more passive means. There are less demand for courtyard linked houses although the courtyard could hypothetically be the answer for a passive cooling design strategy. Hence, the aim of this research is to explore the possibilities of enhancing indoor thermal comfort condition by determining the effectiveness of courtyard as a passive cooling building element. The objectives of this thesis are: i) to study the types of courtyard configuration in existing linked houses; ii) to investigate the environmental condition of the courtyard and its effect to the indoor thermal comfort; iii) to explore the importance of courtyard configuration in providing good natural ventilation and iv) to determine the best courtyard configuration that create best indoor thermal comfort of a linked house. This study investigated two similar urban linked houses (with and without internal courtyard) in terms of size and specifications in Shah Alam and Klang. Data based on two days of measurements and observations at both houses for outdoor, indoor temperature, relative humidity and air velocity revealed that the indoor thermal conditions for both houses exceeded the thermal comfort zone recommended by Givoni's Bio-Climatic chart and ASHRAE. However, through comparative analysis, the house with internal centre courtyard produced better results and maintained a more comfortable indoor condition due to its horizontal and vertical natural cross ventilation which occurred during the day time and night time. Further predictive investigations on the courtyard linked house, based on CFD simulations using Flovent 7.2 and AnSys were conducted. Three variations of design models were studied namely enlarged courtyard area, increased courtyard walls height and enlarged openings at the front and rear. Diurnal simulations concluded that the increased of courtyard surrounding wall height and enlarged openings at front and rear options were the most effective, whereas the enlarged courtyard area (footprint) type were less effective, regardless of which operation mode were applied. Hence, linked houses with courtyards are proven to be beneficial to the occupants by providing passive cooling through natural ventilation.

ACKNOWLEDGEMENT

All praise to the almighty Allah for giving me the strength, concentration, patience and wisdom to overcome all difficulties I have faced.

I take this opportunity to convey my utmost gratitude to my supervisors. Their guidance and support motivated me to complete this thesis. My deepest gratitude goes to Professor Dr. Azni Zain Ahmed who guided me through this long journey with her steadfast thoughtfulness and expertise throughout the process of this thesis; to Associate Professor Dr. Sabarinah Sheikh Ahmad who provided me with numerous insightful and comprehensible instructions of using laboratory equipment, measuring tools, editing software and CFD-IES software and training in this research; to Professor Ar. Dr. Abdul Razak Sapien who provided me with his intuitive suggestions about the methodology, data analysis and CFD-Flovent 7.2 software tuition throughout the course of this research investigation and to Professor Dr. Nasir Mohd. Taib who has been consistent in encouraging and giving me constructive comments about the PhD course.

I feel greatly in debt to the Universiti Teknologi MARA/SLAB who has provided financial support, equipment and softwares for my study throughout the years. My special appreciation is given to Mr. Mohd. Fuad Shariff Hussein, Ms. Khazimah Md. Isa, Mr. Lim Teck Kwang and Mr. C.K. Tang for providing convenient access to the field study houses, including securing the outdoor weather station and data-loggers used for the measurements. Special thanks to Radtec Sdn. Bhd. for maintaining the data-loggers and providing the data files monthly for a period of two months; and to Mr. Mohd. Izham Rohani and Mr. Roy Sim for their assistance with the CFD simulation softwares.

My heartfelt gratitude is given to my beloved wife who has always supported me with everything she has; my sister who offers to help me with everything she can; my children who love and understand everything I do and to whom it may concern and not mentioned in this thesis has help me indirectly.

TABLE OF CONTENT

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGMENTS	v
TABLE OF CONTENT	vi
LIST OF TABLES	xiii
LIST OF FIGURES	xvii
LIST OF ABBREVIATIONS	xxv
LIST OF NOMENCLATURES	xxvii
CHAPTER ONE: INTRODUCTION	1
1.1 Background	1
1.2 Research Hypothesis	4
1.3 Interviews	6
1.4 Research Questions	8
1.5 Research Objectives	8
1.6 Scope and Limitation of the Research	8
1.7 Significance of The research	9
1.8 Definition	10
1.8.1 Linked Houses	10
1.8.2 Intermediate Linked House	10
1.8.3 Courtyard	11
1.8.4 Air Well	11
1.9 Research Framework	11
1.10 Thesis Outline	13
CHAPTER TWO: LITERATURE REVIEW	14
2.1 Passive Cooling Strategies For Hot-Humid Climates	14
2.2 Thermal Comfort And Adaptation In Hot-Humid Climates	17

CHAPTER ONE

INTRODUCTION

This thesis explores the potential of improving indoor thermal comfort in intermediate linked houses through centre courtyard. This courtyard provides an opening that allows thermal built up. The housing development in Malaysia demand more linked houses type residential unit as compared to other types. Even though the design of linked houses complies to the Uniform Building By-Law (UBBL 1984) standards but with reference to researches (Pan, 1997; Tan, 1997; Jones, *et.al.*, 1993 & 1994; Zulkifli, 1992a, 1992b, 1994a, 1994b; Hui, 1998; Abdul Razak, *et.al.*, 2000, 2001) confirmed that internal thermal comfort cannot rely on natural ventilation performance. By observation and theory, it is understood that hot air rises and cold air replaces which called stack effect, this will have advantages for front and rear opening intermediate linked houses to benefit from this open courtyard. However this theory has not been investigated, therefore investigation to promote natural flow ventilation in intermediate linked houses should be carried out.

1.1 BACKGROUND

Malaysia is a developing country with hot and high humidity climate condition throughout the year. This has urged working citizen to realise the importance of working and living in a conducive and comfortable environment so as to ensure higher quality of productivity and pleasant time to relax at home. “Thermal comfort must be created to satisfy the needs of man so that he may perform efficiently” (Zain-Ahmed, 2000). To buy a house is something precious that a consumer would only spend once in his lifetime. This demand for houses would be the first upsetting thing when consumers shy away because of the price was beyond their capacity. Although with high price, majority of middle to upper income group of Malaysian preferred linked houses because it is affordable, convenient, landed and saleable (REHDA, 2006). Generally the demand for low cost houses is always