

UNIVERSITI TEKNOLOGI MARA

**BIOLOGICAL-CHEMICAL TREATMENT OF
POLYCYCLIC AROMATIC HYDROCARBON
CONTAMINATED SOIL**

SALINA BINTI ALIAS

Thesis submitted in fulfilment
of the requirements for the degree of
Doctor of Philosophy

Faculty of Civil Engineering

June 2016

ABSTRACT

Industrialization has caused a great deal of environmental pollutions such as soil contamination via deposition and spillage of contaminants. One of the major contaminants is high molecular weight (HMW) polycyclic aromatic hydrocarbon (PAH), specifically the benzo(a)pyrene. Benzo(a)pyrene is known for its carcinogenic effect. Several soil remediation strategies have been proposed. However, to date, remediation of benzo(a)pyrene contaminated soil using zero-valent iron (ZVI) and hybrid bacteria-ZVI has not been investigated. The capability of bacteria, namely, *Corynebacterium urealyticum* and *Sphingobacterium spiritovorum* to degrade benzo(a)pyrene in soil were firstly investigated in three conditions, single, binary and ternary substrate experiments. Binary and ternary substrate experiments involved the degradation of benzo(a)pyrene, a HMW-PAH with the presence of low molecular weight (LMW) PAH. It was found that both bacteria were capable of degrading the benzo(a)pyrene in the presence of anthracene and phenanthrene (both are LMW-PAHs). However the degree of degradation varied. For instance, the degradation of benzo(a)pyrene was enhanced with the presence of anthracene and phenanthrene in ternary substrate experiment, where 30% of benzo(a)pyrene was degraded. In the single and binary substrate experiment which only phenanthrene was present, about 24% and 14% of benzo(a)pyrene was degraded. Both bacteria degraded the benzo(a)pyrene at the rate of 1.508 – 3.229 mg/kg/day. Then, the ability of ZVI, an engineered iron particles to facilitate in the oxidation of benzo(a)pyrene, was evaluated in single and mixed PAHs experiments with different ZVI concentrations. In this case, it was found that the higher the dosage of ZVI in the soil, the more benzo(a)pyrene was oxidized. The degradation rates for ZVI oxidation were at 0.154 – 0.718 mg/kg/minutes which is 150 times higher than the biological treatment. The soil contaminated by benzo(a)pyrene was then sequentially and simultaneously remediated with bacteria and ZVI in hybrid treatment approaches. A slight enhancement in the removal of benzo(a)pyrene was found in the hybrid treatment compared to the individual treatment approach. However, the most effective hybrid approach was through the sequence treatment with bacteria (*Sphingobacterium spiritovorum*) followed by ZVI. In this, 48% of benzo(a)pyrene was removed. The maximum biotic and abiotic conditions for the efficient remediation strategy of benzo(a)pyrene were also investigated. It was found that concentration of bacteria at CFU 10^8 /g, temperature 35°C and pH 4 were the maximum conditions for the hybrid bacteria-ZVI. Mathematical models to predict benzo(a)pyrene removal using *S. spiritovorum*-biological treatment, ZVI-chemical treatment and hybrid *S. spiritovorum*-ZVI were successfully developed and validated in this study. The proposed models were able to provide prediction of benzo(a)pyrene removal that will help engineers to plan and design the remediation strategy in order to minimize the impact of PAH contamination on human and environment.

ACKNOWLEDGEMENTS

In the name of Allah the Beneficent and the Compassionate. I would like to express my deepest gratitude to Allah S.W.T. the Almighty for His guidance and blessing for me to complete this thesis. I take the opportunity to express my sincere thanks and gratitude for those who had helped me directly or indirectly throughout the completion of this thesis.

I am thankful to my principal supervisor, Professor Sr. Ir. Dr. Suhaimi Abdul Talib for his guidance, encouragements, and providing me with an excellent atmosphere of doing research. Special thanks also to my supervisor, Associate Professor Dr. Megawati Omar and Associate Professor Dr. Noor Hana Hussain for their constant help, advice, suggestions in research and writing this thesis.

I am deeply indebted to my husband, Meor Burhan Shuhdy bin Mior Khairudin, my parents and parents in law, as no words can express their incredible love, prayers, sacrifices and encouragements throughout my study. Special thanks also to other family members for their support, inspiration and motivation.

My sincere appreciation goes to my laboratory colleagues of the Bioremediation Research Centre (myBIOREC, UiTM), Associate Professor Dr. Nor Zila Othman, Dr Nor Amani Filzah, Dr Tay Chia Chay, Liew Hong Hooi, Satira Hambali, Caroline Marajan, Sherina Kamal, Ain Nihla and Ros Adibah for their help and stimulating suggestions.

Special appreciation also to laboratory technicians of myBIOREC and Environmental Engineering Laboratory Faculty of Civil Engineering UiTM, Mr Muhamad Hazli Shariei, Mr Mohd Azuan Azhar and Puan Aishah Idris; SEM-FESEM technical support staff, Mr Hayub Ta of Physic Laboratory, Faculty of Applied Science UiTM (FAS UiTM) and Cik Siti Irwani of the Quasi-S Sdn Bhd; XRD analysis support staff, Mr Mohd Riduan of the Centre of Research and Instrumentation, Universiti Kebangsaan Malaysia (UKM); BET analysis technical support staff, Puan Masni Soberi of the Institute of Science (IOS UiTM) and Puan Nordiana Zainudin of Faculty of Chemical Engineering UiTM (FCE UiTM); FTIR technical support staff, Puan Rohaida Zainordin of FCE UiTM and Puan Shaheda Ismail of the Faculty of Applied Science UiTM (FAS, UiTM); CHNS analysis technical support staff, Mr Saripshah Abd Majid of Faculty of Science and Technology UKM; microbiologist support staff, Mr Johari Saffar from Microbiology Laboratory, FAS UiTM, Mr Kong King Chow and Dr Suzanne Khoo Chai of Progen Scientific Sdn Bhd, HPLC; and GC technical support and analyst from Perkin Elmer Sdn Bhd and Phenomenex for their helping hand and valuable hints.

Comments, suggestions and critical views from those I met during colloquium, conference and personal meeting, I am very appreciative. All of your thoughts help.

A special thank also goes to my employer, Universiti Teknologi MARA for giving me permission to commence this study. Last but not least, I would like to acknowledge the financial support from the Government of Malaysia, through the Ministry of Higher Education.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xii
LIST OF FIGURES	xv
LIST OF PLATES	xx
LIST OF ABBREVIATION	xxi

CHAPTER ONE: INTRODUCTION

1.1	Motivation	1
1.2	Problem Statement	4
1.3	Objectives	6
1.4	Scope of Work	7
1.5	Significance of Study	10

CHAPTER TWO: LITERATURE REVIEW

2.1	Introduction	12
2.2	Polycyclic Aromatic Hydrocarbons	13
2.2.1	Human and Environmental Concerns	16
2.2.2	Health Hazard	18
2.2.3	PAHs Permissible Standard	19
2.3	Remediation Strategies of PAHs Contaminated Soils	20
2.3.1	Physical Treatment	21
2.3.2	Chemical Treatment	25
2.3.2.1	Ozone	27
2.3.2.2	Hydrogen Peroxide	30

CHAPTER ONE

INTRODUCTION

1.1 MOTIVATION

In pursuing development, humans have neglected the importance of preserving soil quality. Soil quality has been gradually degraded by organic and inorganic contaminants (Lors et al., 2012; Mohd-Kamil et al., 2010; Sojinu et al., 2010; Maliszewska-Kordybach et al., 2009). The degradation in soil quality is particularly concern especially in the case of improper planning of industries in the past. This can be seen from large patches of ‘stains’ on the soil.

In Malaysia, authorities are becoming aware that soil is experiencing deterioration due to organic and inorganic contaminants (Balasingam and Seng, 2011; Chun-Yang and Abdul-Talib, 2006; Sabtu, 2006). Therefore, under the Ninth Malaysia Plan, Department of Environment (DOE) studied the criteria and standards for managing and restoring contaminated land in Malaysia. Based on the study, guidelines on soil screening levels for contaminated land have been documented (DOE, 2009). Soil contamination or deterioration causes a great deal of losses in economy as it has disturbed natural ecological balance in which higher cost is needed for reclamation and revitalization of contaminated land. In reality, the soil contamination causes serious implication on water and food security which in turn bring potential health hazard to the public and environment (Frits and Molden, 2002). As the demand for water supply is increasing, concerns about groundwater quality have been raised because the groundwater has been proposed to be used commercially in order to meet the increasing demand. The pith of the matter is that the contaminants can eventually lead to severe impact on water resources and impose hazard to groundwater reservoirs. In addition, the contaminated soil has reduced soil fertility hence reducing agricultural yield and producing unhealthy food. Thus the use of fertilizer is needed to enhance the infertile soil but this continues to degrade the ecosystem due to the presence of chemical substances in the fertilizer.