UNIVERSITI TEKNOLOGI MARA

PREDICTION OF DISTORTION ON MULTIPASS GMAW PROCESS USING FEM AND EXPERIMENTAL VALIDATION

ROBERT NGENDANG ANAK LIDAM

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Mechanical Engineering

October 2013

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Robert Ngendang Anak Lidam
Student I.D. No.	:	2010816504
Programme	:	Master of Science
Faculty	1	Faculty of Mechanical Engineering
Title	:	Prediction of Distortion on Multipass GMAW Process using FEM and Experimental Validation
Signature of Student		
Date	:	October 2013

ABSTRACT

This thesis investigated the behaviour of angular distortion due to multipass GMAW process using finite element method (FEM). Various cases studies were conducted started with basic welding structure of butt and T-joint which is considered as the preliminary study to develop the fundamental numerical model. Further, the study was continued on the combined butt and T-joint to test the numerical model developed in the basic study of butt and T-joint before the models were applied on the ship panel application. Finally, the study was conducted on the ship panel (Laboratory Mock-up). In the simulation study, the distortion was analysed using 2D and 3D analysis based on thermo-elastic-plastic approach using FE software package SYSWELD 2010. It was found out that, 2D multipass analysis could be employed to obtain the fast average result of angular distortion while 3D multipass analysis to produce more accurate and complete results. To validate the simulation study, experimental investigations were conducted using fully automated robotic welding process. Almost all the simulation results were in good agreement with the experiments, except in 2D analysis on complex and large geometry. This result of the study indicates that the simulation study is reliable tool in predicting the welding induced distortion on the particular geometry and welding joint in this study. The effects of the clamping and welding sequence on distortion were also investigated in this study, and it was found out that the clamping condition and the welding sequences play a considerable factor in angular distortion.

TABLE OF CONTENTS

Page

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENT	V
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xii

CHAPTER ONE: INTRODUCTION

1.1	Background of the Study	1
1.2	Problem Statement	2
1.3	Objectives of the Study	3
1.4	Scope of the Study	3
1.5	Significance of the Study	4

CHAPTER TWO: LITERATURE REVIEW

2.1	Funda	Fundamental Theory of Welding Distortion		
2.1	2.1.1	Major Types of Shrinkages Induced by Welding	7	
		2.1.1.1 Transverse Shrinkage	8	
		2.1.1.2 Longitudinal Shrinkage	9	
		2.1.1.3 Angular Distortion	11	
	2.1.2	Significance of Material Properties on Distortion	12	
	2.1.3	Effect of Welding Process and Procedures	14	
	2.1.4	Effect of Clamping Condition	15	
2.2	FEM Approach in Welding Simulation			
	2.2.1	Linear Elastic Approach		
	2.2.2	Thermal-Elastic-Plastic Approach	17	

		2.2.2.1	Basic Principles of Thermo-Elastic Plastic	17
CHAI	PTER 1	HREE:	RESEARCH METHODOLOGY	
3.1			cedures of Multipass Welding using SYSWELD	26
	3.1.1		Modelling	30
	3.1.2		ry Modelling	34
		3.1.2.1		34
		3.1.2.2	2D Local Mesh Analysis for Thermal Cycle Extraction	36
		3.1.2.3	2D Global Mesh for 2D Multipass Analysis	38
		3.1.2.4	3D Global Mesh for 3D Multipass Analysis	39
	3.1.3	Boundar	ry Condition	41
	3.1.4	Heat Inp	out Modelling	45
	3.1.5	Multipa	ss Welding Analysis	49
	3.1.6	Post pro	cessing	49
3.2	Experimental Investigation for Simulation Validation			
	3.2.1	Specime	en Preparation	50
	3.2.2	Experim	nental Set-up and Procedure	50
	3.2.3	Prelimin	nary Investigation on Welding Parameters	54
	3.2.4	Distortic	on Investigation and Measurement	54
		3.2.4.1	Distortion Measurement by using Coordinate	
			Measuring Machine	55
		3.2.4.2	Distortion Measurement by using Digital Dial Gauge	55
CHAI	PTER I	OUR: C	CASE STUDIES	
4.1			Distortion Analysis on Butt Joint	58
4.2			Distortion Analysis on T-Joint	60
4.3	Case Study 3: Distortion Analysis on Combined Butt and T-Joint 61			61
4.4	Case Study 4: Investigation on Ship Panel (Laboratory Mock-up) 64			

CHAPTER FIVE: RESULTS AND DISCUSSIONS

5.1	Distortion Analysis on Butt Joint	68
5.2	Distortion Analysis on T-Joint	70
5.3	Distortion Analysis on Combined Butt and T-Joint	73
5.4	Investigation on Ship Panel (Laboratory Mock-up)	76