UNIVERSITI TEKNOLOGI MARA

DESIGN OF STACKED PATCH ANTENNA USING LTCC TECHNOLOGY

ZATUL IFFAH BINTI ABD LATIFF

Dissertation submitted in partial fulfilment of the requirements for the degree of

Master of Science In Telecommunication And Information Engineering

Faculty of Electrical Engineering

July 2013

AUTHOR'S DECLARATION

I declare that the work in this dissertation was carried out in accordance with the

regulations of Universiti Teknologi MARA. It is original and is result of my own

work, unless otherwise indicated or acknowledge as referenced work. This topic has

not been submitted to any other academic institution or non-academic institution for

any other degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and

Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct

of my study and research.

Name of Candidate :

Zatul Iffah binti Abd Latiff

Candidate's ID No. :

2011969231

Programme

MSc. In Telecommunication and Information

Engineering

Faculty

Faculty of Electrical Engineering

Thesis Title

Design of Stacked Patch Antenna using LTCC

Technology

Signature of Candidate

Date

July 2013

ii

ABSTRACT

This project presents the design of Stacked Patch Antenna using the LTCC technology with aperture coupler as the feeding technique. The proposed design was simulated using CST Microwave Studio software based on operating frequency of 5.8 GHz. The advantages of LTCC technology over the PCB technology are observed and output from the result shows that LTCC technology is better that PCB technology with 88% improvement in term of gain and 75.9% improvement on the antenna size. A comprehensive study focusing on the optimization of the antenna performance was done to understand the effect of various dimensional parameters towards the antenna. The results were analysed and discussed in term of radiation pattern, gain, return loss, resonant frequency and antenna size.

TABLE OF CONTENTS

	PAGE
DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xi
CHAPTER	
	PAGE
1. INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	2
1.3 Objectives	3
1.4 Scope Of Work	3
1.5 Structure of the Project	4
2. LITERATURE REVIEW	5
2.1 Introduction	5
2.2 Basic Antenna Parameters	5
2.2.1 Radiation Pattern	5
2.2.2 Beamwidth	6

2.2.3 Bandwidth		7
2.2.4 Directivity		8
2.2.5 Gain		9
2.2.6 Antenna Efficiency		10
2.2.7 Return Loss		11
2.2.8 VSWR		11
2.2.9 Polarization		12
2.3 Microstrip Antenna		12
2.4 Feeding Techniques		14
2.4.1 Coaxial Probe Feed		15
2.4.2 Microstrip Feed		16
2.4.3 Proximity Coupling		18
2.4.4 Aperture Coupling		19
2.5 LTCC Technology		20
2.6 Patch Dimensions		21
2.7 Parasitic Patch		23
2.8 Summary		24
3. METHODOLOGY	***************************************	25
3.1 Introduction		25
3.2 Flow Chart of Design Metho	dology	26
3.3 Design and Simulations		27
3.4 Design and Specifications		28
3.5 Summary		29