UNIVERSITI TEKNOLOGI MARA

PHYSICOCHEMICAL AND BIOACTIVITY PROPERTIES OF HYDROXYAPATITE COATINGS ELECTRODEPOSITED ONTO TITANIUM SUBSTRATES

NIK NORZIEHANA BINTI CHE ISA

Thesis submitted in fulfilment of the requirements for the degree of **Master of Science**

Faculty of Applied Sciences

MAY 2013

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as reference work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nik Norziehana Bin	nti Che Isa		
Student I.D. No.	:	2009712843			
Programme	:	Master of Science			
Faculty	:	Applied Sciences			
Thesis Title	:	Physicochemical and Bioactivity Properties of			
		Hydroxyapatite C	Coatings	Electrodeposited	onto
		Titanium Substrates	5		

Signature of Student :

Date : May 2013

ABSTRACT

Titanium and its alloys have widely been used as metallic implants because of their good biocompatibility and high corrosion resistance. However, they exhibit no bioactive properties and fail to bind to bone tissue. In order to make the titanium implants bioactive, hydroxyapatite (HAp) has been coated onto titanium surface. In this study, HAp coatings were successfully prepared on titanium substrates by electrodeposition technique using aqueous solution containing $CaCl_2 + NH_4H_2PO_4$ with Ca/P ratio equal to 1.67. The effects of varying deposition conditions and solutions such as applied potential, deposition time, deposition solution concentration and the addition of chitosan into deposition solution on the electrodeposition process as well as the formation of HAp coatings were investigated. The obtained deposited HAp samples were characterized using FESEM, EDAX, XRD, FTIR, immersion in SBF solution and Scotch® tape test. The deposition conditions and solutions have strongly affected the formation of HAp coatings. The best HAp coating was produced by applying a constant potential of -1.5 V vs Ag/AgCl using 0.167 M CaCl₂ + 0.1 M NH₄H₂PO₄ solution at 80 °C for 30 min. The addition of 5 volume percent of chitosan into the deposition solution has improved the adhesion of HAp coatings on the Ti surface. It was found that the prepared HAp coatings are bioactive as shown by the change of surface morphology after immersion in SBF solution for a few days. The HAp material can also be deposited on different types of Ti substrates (i.e.: Ti mesh and NiTi alloy) using the electrodeposition technique. It was also proven that coated HAp onto Ti substrates gave better physicochemical properties of Ti implants.

TABLE OF CONTENTS

	Page
AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xiv
DEFINITION OF TERMS	xv
THESIS ORGANIZATION	xvii

CHAPTER ONE: INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statements	2
1.3	Significance of Study	3
1.4	Objectives of Study	3
1.5	Scope and Limitations of Study	4
1.6	Conceptual Framework	5

CHAPTER TWO: LITERATURE REVIEW

2.1	Metallic Materials in Orthopaedics	6
2.2	Calcium Phosphate (Ca-P) Based Coatings	8
2.3	Hydroxyapatite	9
2.4	Methods for Fabrication of Hydroxyapatite Coatings	10
2.5	Electrodeposition Process of Hydroxyapatite	11
2.6	Hydroxyapatite/Polymer Hybrid Coatings	18
2.7	Bioactivity Study	20
2.8	Relevant Research	23

CHAPTER THREE: METHODOLOGY

3.1	Mater	Materials				
	3.1.1	Samples/ Substrates	25			
	3.1.2	Chemicals	25			
	3.1.3	Apparatus and Instruments	25			
3.2	Titani	um Substrates Pre-treatment: Acid Etching	26			
3.3	Electr	odeposition of HAp Coatings	26			
	3.3.1	Pure HAp Coatings	27			
	3.3.2	Analysis of pH Vicinity	27			
	3.3.3	Hybrid HAp/chitosan Coatings	27			
3.4	Coatin	Coatings Characterization				
	3.4.1	Field Emission Scanning Electron Microscope (FESEM)	28			
	3.4.2	X-ray Diffractometer (XRD)	31			
	3.4.3	Fourier Transform Infrared (FTIR)	32			
	3.4.4	Adhesion Test	34			
3.5	Bioac	tivity Study	34			
	3.5.1	Preparation of SBF Solution	35			
3.6	Electr	ochemical Corrosion Test	37			
СНА	PTER	FOUR: RESULTS AND DISCUSSION				
4.0	Introd	uction	39			
4.1	Titani	um Surface Treatment: Acid Etching	40			
4.2	Cyclic	e Voltammetric (CV) Analysis	42			
4.3	Influe	nce of Electrodeposition Conditions	44			
	4.3.1	Applied Potential	44			
	4.3.2	Deposition Solution Concentration	52			
	4.3.3	Deposition Time	56			
	4.3.4	Adding Additive (Chitosan)	60			
4.4	Bioac	pactivity Study				
4.5	Electr	odeposition of Hybrid HAp/chitosan on Different Substrates	75			
	4.5.1	Ti Mesh	75			
	4.5.2	NiTi Alloy	78			
		4.5.2.1 Corrosion Test	83			
			vi			