UNIVERSITI TEKNOLOGI MARA

DEVELOPMENT OF OPERATING SPEED PREDICTION MODELS FOR HORIZONTAL CURVE BASED ON URBAN ARTERIAL ROADWAY

NADIAH MOHAMED

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Civil Engineering

July 2013

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Nadiah Mohamed
Student I.D. No.	a.	2008579931
Programme	:	Master of Science
Faculty	1	Faculty of Civil Engineering
Thesis Title	:	Development of Operating Speed Prediction Models for Horizontal Curve Based on Urban Arterial Roadway
Signature of Student	:	the
Date	:	July 2013

ABSTRACT

Geometric road design consistency modelling is used to detect any inconsistencies in road alignment, particularly horizontal and vertical alignment. Unusual features of road geometries or inconsistencies can produce unsafe driving experience due to carelessness in the handling of vehicles. To help minimize the risk of accidents at the curve, the 85th percentile speed prediction model is needed for the Malaysia scenario to ensure the road consistency. The current technique of identifying speed design based on REAM (2002) guidelines is prone to produce inconsistencies in road design. This is because the geometric elements determined from the identified speed design are based on minimum values and it is recommended to adopt higher values for the purpose of road construction (REAM, 2002). However, no maximum value has been set up thus leads towards under-design or over-design of road geometry specifications. With this in mind, this research aims to develop models for the purpose of predicting consistencies of urban road specifically for horizontal alignment curves with novel methodology adopted in this study. Several techniques were adopted such as spot speed study, VBOX-GPS and Automatic traffic counter detector and had been successfully performed. Parameters collected are the curve length, radius of curve, width of lane, vehicle speed at the beginning of the curve, at the middle of the curve and at the end of the curve, superelevation and road gradient. By adopting multiple regression analysis, one model for the beginning of the curve, $V85_{CS}$, one model for the middle of the curve, $V85_{CM}$ and one model for the end of the curve, V85_{CE} with R-Sq value of more than 50% were successfully developed. These regression models generally estimates 85th percentile operating speed at specified points along the curve. V85_{CS}, V85_{CM} and V85_{CE} were further validated to confirm of its usefulness in predicting the value of operating speed for horizontal alignment. Validation of models were performed by comparing the mean difference of the develop regression models with the empirical data which is isolated from being used in the model development process. Comparisons of $V85_{CM}$ and three models from other researchers were also conducted and it revealed that V85_{CM} is more superior compared to the other models developed from other researchers and established guidelines from overseas. It was also discovered that radius of curve, CR is highly sensitive in predicting the 85th percentile operating speed at the middle of curve compared to superelevation and V85(CS). To conclude, fundamental differences in driving behaviour, traffic composition and road design standard guideline used may contribute to high difference of R-Sq values between the established models and V85_{CM}. Furthermore, other models are not reflective of Malaysian road conditions and this was discovered in the comparisons conducted in this study. All these factors might contribute to the overestimation or underestimation of the models. Therefore, the developed models in this study are proposed to be a starting basis of the prediction of the 85th percentile operating speed model to be included in the Malaysian urban geometric road design guidelines.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xv
LIST OF ABBREVIATIONS	xviii
LIST OF SYMBOLS	xix

CHAPTER ONE: INTRODUCTION

1.1	Background of Study	1
1.2	Statement of the Problem	3
1.3	Objectives of the Study	4
1.4	Scope and Limitations of Study	5
1.5	Organisation of the Thesis	5

CHAPTER TWO: REVIEW OF LITERATURE

2.1	l Introduction		7	
2.2	An O	An Overview of Road System		
	2.2.1	Definition	n of Urban and Rural Roads	8
	2.2.2	The Conce	8	
	2.2.3	Access Fu	nction and Mobility Function	9
	2.2.4	Hierarchy	r of Road	11
2.3	2.3 Component of Road			12
	2.3.1	Sight Dist	ance	13
	2.3.2 Horizontal Alignment			13
		2.3.2.1	Superelevation	15
		2.3.2.2	Side Friction Factor	16
2.4	Desig	n Speed, O	perating Speed and Posted Speed Limit	16
	2.4.1	Design Sp	beed	17
	2.4.2 Operating Speed			17

Page

3.5	.5 Data Collection Method		58
	3.5.1	Spot Speed Studies	58
		3.5.1.1 Generating 85th Percentile Operating Speed	59
	3.5.2	Method for Data Collection by Using VBOX	61
		3.5.2.1 Measuring Road Gradient by Using VBOX Device	62
	3.5.3	Data Collection by Using RealCountTM	62
	3.5.4	Method Adopted to Obtain Radius of Curve	63
3.6	Flowe	chart of Data Collection	64
3.7	Data	Analysis	65
	3.7.1	First Stage Analysis	68
		3.7.1.1 Data Screening	67
		3.7.1.2 Model Development	68
	3.7.2	Second Stage Data Analysis	69
3.8	Metho	ods of Checking Validity	71
	3.8.1	Discrepancy Formula	71
	3.8.2	Paired T-Test	72
3.9	Mean	s Comparison	73
3.10) Chapt	ter Summary	73
CH	APTE	R FOUR: ANALYSIS OF DATA	
4. l	Introd	luction	75
4.2	Data	Screening Process	75
	4.2.1	Descriptive Statistics of the Data	75

4.3	Correlation Matrix for All of the Parameters		78
4.4	Empi	rical Data Analysis	79
	4.4.I	Comparison of Means for Day Time versus Night Time Data	79
	4.4.2	Comparison of Means for Data of Dry Pavement versus Wet Pavemen	t
		Conditions	80
		4.4.2.1 Heavy Rain versus Dry Pavement Condition	80
		4.4.2.2 Light Rain versus Dry Pavement	81
	4.4.3	Comparison of Means for Data at V85(CS), V85(CM) and V85(CE)	81
		4.4.3.1 V85(CS) versus V85(CM)	81
		4.4.3.2 V85(CM) versus V85(CE)	82
		4.4.3.3 V85(CE) versus V85(CS)	82

vii