UNIVERSITI TEKNOLOGI MARA

POWDER PREPARATION EFFECT ON OXYGEN PERMEATION FLUXOF HOLLOW FIBRE LSCF6428 CERAMIC PEROVSKITE MEMBRANE

MOHD HAIKAL BIN MUSTAFA

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

Faculty of Chemical Engineering

March 2015

AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Mohd Haikal Bin Mustafa
Student ID No.	:	2010342703
Programme	:	Master of Science (EH780)
Faculty	:	Chemical Engineering
Thesis Title	•	Powder Preparation Effect on Oxygen Permeation
		Flux of Hollow Fibre LSCF6428 Ceramic
		Perovskite Membrane
Signature of Student	;	X
Date	:	March 2015

ABSTRACT

The industrial demand for pure oxygen had increased throughout the years. It is expected the market for this commodity will massively expand in the near future. However, the current industrial normal processes to produce pure oxygen from air have their limitations. Alternatively, oxygen production through separation from air using perovskite membrane particularly LSCF6428 compound has shown a potential to become a reliable and efficient process. Nevertheless, in order to achieve high oxygen permeation flux through the perovskite dense membrane, several factors must be taken into consideration. One of these factors is the powder preparation method, which determined the powder properties such as its particle size, particle shape and compound structure. The objective of this research is to observe the effect of powder preparation towards oxygen permeation flux through hollow fibre membrane. Therefore, in this research, 3 powder preparation methods; solid state reaction, reactive grinding and co-precipitation were applied to produce LSCF6428 perovksite powders. Through characterization process, the produced powders were compared with a commercially purchased powder. Afterward, by using 2 different LSCF6428 powders; powder derived from solid state reaction method and commercially procured powder, two types of hollow fibre ceramic membranes were fabricated using phase inversion/sintering technique. The membranes were characterized accordingly before it underwent oxygen permeation studies at several condition settings. Based from the results obtained, it was shown that both membranes were gas tight at ambient temperature and gave relatively the same oxygen permeation flux at several temperature values. Given that both membranes successfully achieved asymmetric structure, which provide small oxygen permeation resistance and large surface area for oxygen surface reaction, it was deem that the membrane structure and configuration in the shape of hollow fibre played a significant factor in determining the oxygen permeation flux as compared to powder preparation method. In conclusion, the powder preparation method does not directly affect the oxygen permeation flux through hollow fibre membrane.

TABLE OF CONTENT

	Page
AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF NOMENCLATURES	xiii

CHAPTER ONE : INTRODUCTION

1.1 Background of the Study	1
1.2 Problem Statement	4
1.3 Objectives of the Study	5
1.4 Scope and Limitation of	5
1.5 Research Hypothesis	6

CHAPTER TWO : LITERATURE REVIEW

2.1 Introduction	7
2.2 Mixed Ionic-Electronic Conducting (MIEC) Ceramic Membrane	10
2.3 Perovskite Membrane	16
2.4 LSCF Powder Preparation Methods	20
2.5 Hollow Fibre Membrane	24
2.6 Oxygen Permeation through Hollow Fibre Membrane	28
2.7 Powder preparation Effect on Oxygen Permeation Flux	31

CHAPTER THREE : METHODOLOGY

3.1 Introduction	37
3.2 Powder Preparation Methods	37
3.3 Powder Characterizations	38
3.4 Hollow Fibre Membrane Fabrication	39
3.5 Hollow Fibre Membrane Characterizations	42
3.6 Gas Tightness Testing	42
3.7 Oxygen Permeation Testing	43

CHAPTER FOUR : RESULTS AND DISCUSSION

4.1 Introduction	47
4.2 Powder Preparation Stage	47
4.2.1 XRD Analysis	47
4.2.2 SEM Images Observation	50
4.2.3 Surface Area BET Theory Calculation	51
4.2.4 Powder Preparation Method	51
4.3 Hollow Fibre Membrane Fabrication	52
4.3.1 XRD Analysis	52
4.3.2 SEM Images Observation	53
4.3.3 3 Point Bending Testing	54
4.3.4 Hollow Fibre Membrane Fabrication Procedures	54
4.4 Oxygen Permeation Studies	55
4.4.1 Gas Tightness Testing	55
4.4.2 Oxygen Permeation Flux Comparison	55
4.4.3 Powder Preparation Methods Effect on Oxygen Permeation	
Flux	58