UNIVERSITI TEKNOLOGI MARA

MUTUAL ATTESTATION AND INTEGRITY VERIFICATION OF RFID SYSTEM USING TRUSTED PLATFORM MODULE (TPM)

MOHD FAIZAL BIN MUBARAK

Thesis submitted in fulfillment of the requirements

for the degree of

Master of Science

Faculty of Computer Science and Mathematics

October 2010

Author's Declaration

.

I declare that this thesis entitled "Mutual Attestation and Integrity Verification of RFID System Using Trusted Platform Module (TPM)" is the result of my own research except as cited in the references. The thesis has not been accepted for any degree and is not concurrently submitted on candidature of any other degree.

Signature	:
Name	: Mohd Faizal Bin Mubarak
Date	: 25 th October 2010

Abstract

Radio Frequency Identification (RFID) technology is an advance contactless identification system which communicates through radio frequency between RFID reader and tags. Basically, there are three components in RFID system which consists of reader, back-end server and tags. RFID tags are normally small and can be deployed in many solutions such as goods and luggage tracking, and access control system. The widespread deployment of RFID system across many solutions is a good impact to the community and it's simplifies a lot of business transactions. However, massive deployment of RFID system into several solutions may potentially impose security and privacy threats. Since RFID tag and reader communicate through contactless radio frequency channel, messages can easily be captured by any unknown reader. RFID system without any trust and integrity element poses security threat because secret data can easily be revealed to adversary system due to unverified RFID platform. Numerous works done by several researchers have shown that unprotected RFID platform can be compromised either by malicious codes or man in the middle attack. System integrity verification for RFID reader, tag and back-end server have to be implemented to provide system trust for RFID system. The proposed back-end server and RFID reader with the embedded trusted computing technology will provide the system integrity measurements and verifications. This research utilized Trusted Platform Module (TPM) as a tamper proof hardware to protect the integrity of RFID system. The proposed solution provides mutual attestation and integrity verification for trusted RFID protocol by using TPM and Advanced Encryption Standard (AES) encryption for encrypting data transfers within trusted RFID system. Our scheme offers the most enhanced security feature in RFID system by using mutual attestation technique with respect to protect user privacy. This solution also highlights the importance of trusted computing technology towards solving the privacy and security issues. The experiment results prove that our proposed solution is reliable whereas attack model shows that our proposed solution is more trusted and secured compare to previous RFID protocols.

Table of Contents

Abstract	iii
Acknowledgement	iv
Table of Contents	v
List of Figures	viii
List of Tables	х
List of Abbreviations and Glossary	xi
Chapter 1: Introduction	1
Technology Trend in RFID	3
Example of RFID Implementation	4
Issues in RFID System	5
Objectives	7
Main Contribution	8
Limitations	10
Organization	11
Chapter 2: Literature Review	12
Research Goals in RFID Protocol	12
Data Protection	13
Prevention against Major Attacks	14
Integrity Verification	17
Untraceability	18
Scalability	19
Prevention against Data Desynchronization	20
Prevention against Clock Desynchronization	21
Previous RFID Protocols	22
Mutual Authentication Protocol	22
Hash Based Protocol	23
Hash-Based with Timestamp Protocol	25
Protocols with XOR Technique	26

The Blocker Tag		26
Summary		27
Chapter 3: Methodology		28
Research Design		29
Proposed Solution		30
Trusted Platform Module		32
Measuring Platform Components		34
Attestation Technique		36
Notations		38
MuJaSa RFID Protocol		38
Simulation Tool		42
ISO Petra 2.0		43
Enhanced Version of ISO Petra 2.0		47
Chapter 4: Results		56
Experiment 1: Mutual Attestation with	n AES Encryption (MuJaSa RFID Protocol)	58
Number of Tags		58
Iterations		60
Data Analysis		63
Experiment 2: Mutual Attestation with	nout AES Encryption	65
Number of Tags		65
Iterations		67
Data Analysis		70
Experiment 3: Remote Attestation with	h AES Encryption	72
Number of Tags		72
Iterations		75
Data Analysis		77
Experiment 4: Remote Attestation with	hout AES Encryption	79
Number of Tags		8 0
Iterations		8 2
Data Analysis		84
Experiment 5: AES Encryption without	ıt Attestation	87