UNIVERSITI TEKNOLOGI MARA

DEVELOPMENT OF TRUSTED BOOT PROCESS FOR WIRELESS SENSOR NODE USING ARM11 PLATFORM

LUKMAN HAKIM BIN ADNAN

Thesis submitted in fulfilment

of the requirements for the degree of

Master of Science

Faculty of Electrical Engineering

December 2013

AUTHOR'S DECLARATION

I declare that the work in the thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree of qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Lukman Hakim Bin Adnan
Student I.D. No.	:	2009321941
Programme	:	Master in Electrical Engineering (EE780)
Faculty	:	Electrical Engineering
Thesis Title	:	Development of Trusted Boot Process for Wireless Sensor Node Using ARM11 Platform
Signature of Student	:	
Date	•	December 2013

ABSTRACT

Trusted platforms have been proposed as a promising approach for providing security for wireless sensor nodes platform, particularly, from physical type of attacks. However, implementation of a separate Trusted Platform Module (TPM) chip on the platform is not acceptable in the design of wireless sensor nodes because it increases the size and total power consumption of the node. Alternative to that is to use embedded microprocessors with built-in security module, which implements functions similar to the TPM, on the embedded processor. However, since the sensor node is a resource constrained platform with limited processing capabilities, it is important to ensure that the computation and energy consumption for running security functions in the microprocessor are at an acceptable rate. In this study, a trusted boot process for sensor node is developed to provide a trusted platform for wireless sensor node. It comprises of first and second level boot process. The purpose of this research is to implement the "trusted boot process" on the embedded microprocessor to provide security on the hardware layer of sensor node. The proposed system involves integration of hardware and software subsystems. The hardware subsystem, utilize ARM1176JZF-S Development Board with ICE-JTAG. For the software subsystem, the proposed system will have two levels of boot process; which are first level bootloader, acting as the root of trust of the system and, second level bootloader with security module to check the integrity of the kernel or applications that will run on the platform. The results show that the proposed system is able to provide basic security implementations to support image verification of a sensor node through trusted boot process. A brief energy consumption study is also presented to support the work.

TABLE OF CONTENTS

AU	FHOR '	S DECLARATION	ii
ABS	STRAC	Т	iii
ACKNOWLEDGMENTS			iv
TAI	BLE OI	FCONTENTS	v
LIS	T OF T	ABLES	ix
LIST OF FIGURES			Х
LIS	T OF A	BBREVIATIONS	xii
СН	APTER	CONE: INTRODUCTION	1
1.1	OVEF	RVIEW OF THESIS	1
1.2	PROB	BLEM STATEMENT	2
1.3	RESE	ARCH OBJECTIVE	2
1.4	SCOP	E AND LIMITATION OF THE STUDY	3
1.5	DISSI	ERTATION LAYOUT	3
CU			-
СН	APIER	K I WO: LIIERAIURE REVIEW	5
2.1	INTR	ODUCTION	5
2.2	OVEF	RVIEW OF SENSOR NODE	6
	2.2.1	Existing Node and Architecture of Node	7
	2.2.2	Boot Process on Sensor Node	9
	2.2.3	Constraints in the Sensor Node Platform	10
	2.2.4	Types of Security Attack on Sensor Node	11
	2.2.5	Basic Security Requirement on Sensor Node Platform	14
	2.2.6	Overview of Security Approach	15
		2.2.6.1 Software Implementation Technique	15

		2.2.6.2 Hardware Implementation Technique	16	
2.3	TRUST	TED PLATFORM	19	
	2.3.1	TPM Architecture	19	
	2.3.2	Trusted Boot	21	
	2.3.3	Chain of Trust	23	
2.4	ARM 7	RUSTZONE TECHNOLOGY	23	
	2.4.1	Secure Mode of ARM TrustZone Technology	24	
	2.4.2	Secure Boot	25	
	2.4.3	Requirement of Secure Boot	27	
	2.4.4	Trust and Security Requirement in Sensor Node	27	
2.5	SUMM	IARY	27	
CHA	APTER	THREE: METHODOLOGY	29	
3.1	1 INTRODUCTION			
3.2	2 PROJECT WORK FLOW			
3.3	PLANNING AND CONFIGURATION			
	3.3.1	Integration and Implementation	30	
3.4	TESTS	S AND ANALYSIS	31	
	3.4.1	Tests	31	
3.5	PERFO	DRMANCE ANALYSIS	33	
3.6	SUMM	1ARY	35	
CII			24	
СН	CHAPTER FOUR: SYSTEM DEVELOPMENT			
4.1	INTRODUCTION			
4.2	2 HARDWARE CONFIGURATION			
	4.2.1	ARM1176JZF-S Development Board	36	
	4.2.2	ARM1176JZF-S Microprocessor Chip	37	

vi