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ABSTRACT 

 

 

Performing the biomimetic  morphing method on a Micro Air Vehicle (MAV) wing is 
very challenging tasks due to the MAV wing size limitation, limited energy budgets, 
complicated morphing mechanism and complex aeroelastic interactions. These issues 
had restricted the application of  morphing wing on MAV wing platform. As a result, 
the impact of  twist morphing on MAV wing aerodynamics and structural 
performances was not fully understood. Thus, this thesis presents the investigation of 
wing structural, aerodynamics performance and flow structure formations on a basic  
twist morphing MAV wing named as Twist Morphing wing. A series of morphing 
force intensity was imposed on Twist Morphing wing design to elucidate the impact 
of twist morphing mobility. Fully coupled Fluid-Structure Interaction (FSI) simulation 
is the main methodology used in this works. The wing structural and airflow field 
problems over Twist Morphing wing were solved based on a three-dimensional (3D) 
linear quasi-static structural coupled with steady state, incompressible Reynolds 
Averaged Navier Stokes - Shear Stress Turbulence (RANS–SST) flow. The validation 
on aerodynamic performances showed good correlation between the FSI and wind 
tunnel test results. The wing structural results showed that Twist Morphing wings had 
produced high geometric twist magnitude (ϵ), which in turn, induced higher lift 
coefficient (CL) and drag coefficient (CD)  performances on the wing. The flow 
structure investigations revealed that this benevolent and malevolent aerodynamics 
attitude contributed by low-pressure intensity and strong tip vortex (TV) strength 
induced on Twist Morphing wing. These phenomenon had turned out greater in Twist 
Morphing wing with higher morphing force (5N and 3N) configurations. However, 
Twist Morphing wing had also exhibited poor maximum aerodynamic efficiency 
( CL CD ⁄ max) performances. The massive drag coefficient distribution had 
overwhelmed the successive increase in lift coefficient  generation, which 
consequently plunged the maximum aerodynamic efficiencydistribution magnitude on 
Twist Morphing wings. Hence, a multifidelity data Metamodel Based Design 
Optimization (MBDO) study was conducted to improve the maximum aerodynamic 
efficiency  distribution on Twist Morphing wing. The optimal aerodynamic efficiency 
for Twist Morphing wing achieved at  CL CD ⁄ max= 6.05 with angle of attack, 
morphing force and velocity magnitude set at 4.67°, 2.31 N and 9.42 m/s, 
respectively. Detail investigation on optimization outcome showed that the optimal 
Twist Morphing wing exhibited better maximum aerodynamic efficiency magnitude 
than the non-optimal flexible wings. This is due to weak tip vortex strength, which 
induced low  drag coefficient magnitude on the optimal Twist Morphing wing.    
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 CHAPTER ONE 

 INTRODUCTION 
 

1.1 RESEARCH BACKGROUND  

A micro air vehicle (MAV) is a relatively new generation of aircraft. MAV 

design becomes a feasible aircraft design over the past 15 years due to continuous 

research in conventional aero-sciences [1]. Technically, MAV is defined as a micro 

scale class of Unmanned Aerial Vehicle (UAV), which has the wingspan equals to or 

less than 6 inch (approximately 15 cm). MAV velocity speed is less than 15 m/s, with 

the overall weight less than 1 kg. Meanwhile, the Reynolds number operation of 

MAV is below 100,000 [2], which is lower than conventional aircraft, as shown in 

Figure 1.1. According to Defense Advanced Research Projects Agency (DARPA), 

MAV was initially designed for military purpose [3]. Hence, MAV encompasses 

unique characteristics such as lightweight, affordable, stealthy, and expendables. In 

fact, MAV is characterized by its simple operation and equipped with a high-

resolution image capturing system [4]. MAVs have shown some advantages in rapid 

deployment mission capabilities, as well as having stealthy characteristics and 

economic operations. This rapid deployment mission includes the information 

gathering in the surveillance mission, discovery, and communication of any vital and 

confined space [5].  The utilization of MAV can be feasible in such critical areas of 

battlefield region, confined rescue space or maybe biohazardous chemical and nuclear 

resources areas [6]. The development of MAV has rapidly progressed due to 

miniaturization of microelectromechanical systems (MEMS), smart materials, and 

availability of lightweight structures [7]–[10].  

In general, MAV is categorized into three main design groups, as shown in 

Figure 1.2. Among the designs, the fixed-wing MAV is regarded as the best MAV 

design [11]. This is because the fixed-wing design offers better payload and 

endurance capabilities compared to rotary- or flapping-wing MAV of equal size [12]. 

The fixed-wing design such as Trocoid, Micro STAR, Flyswatter, MITE, Batplane, 

and Wasp are few examples of successful fixed-wing MAV design [4]. However, the 
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