UNIVERSITI TEKNOLOGI MARA

INFLUENCE OF CARBON NANOTUBES ON THE THERMAL AND MECHANICAL PROPERTIES OF THERMOPLASTIC NATURAL RUBBER (NR/LNR/LLDPE) COMPOSITES

HAZWANI BINTI HALIM

.

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Applied Sciences

October 2013

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as reference work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Hazwani Binti Halim
Student ID	:	2008263042
Programme	:	Master of Science (AS 780)
Faculty	:	Applied Sciences
Thesis Title		Influence of Carbon Nanotubes on the Thermal and Mechanical Properties of Thermoplastic Natural Rubber (NR/LNR/LLDPE) Composites
Signature of Student	:	Herri
Date	:	October 2013

ABSTRACT

In this research, the plastics (LLDPE) were mixed together with liquid natural rubber (LNR) as compatibilizer and natural rubber (NR) in a percentage of volume ratios 50:10:40 respectively to perform thermoplastic natural rubber (TPNR). This TPNR was reinforced with two types of MWNTs (MWNTs 1 and MWNTs 2). MWNTs 1 is untreated MWNTs (MWNTs without acid treatment) while MWNTs 2 is acid treated MWNTs. MWNTs has been choosen to be a reinforced material (filler) in this study because its exhibit unique mechanical, electronic and magnetic properties. Therefore, this may suggest the enhancement of composites properties as well as the application of it. This blend of composites was prepared via melt blending method using Haake 600 p internal mixer. Based on the optimum parameter, these nanocomposites were prepared at 140 °C temperature, 55 rpm of mixing speed and 13 minutes of processing time. The mechanical and thermal properties of this nanocomposites have been studied with respect to the various composition of MWNTs (2 wt%, 4 wt%, 6 wt%) and 8 wt%). Dynamic mechanical analysis (DMA) and morphological observation also conducted on the composites sample. It has been found that the tensile strength, Young's modulus, and impact strength increase when the concentration of MWCNTs increase until 4 wt%. SEM micrographs have confirmed good dispersion of 2-4 wt% of MWNTs in TPNR. However the dispersion is low at higher content of MWNTs due to agglomeration of nanotubes inside the matrix. The thermal conductivity of the nanocomposites has increased with addition of MWNTs at various compositions.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	V
LIST OF TABLES	ix
LIST OF FIGURES	Х
LIST OF ABBREVIATIONS	xii
LIST OF SYMBOLS	xiv

CHAPTER ONE: INTRODUCTION

1.1	Background of the Study	1
1.2	Problem statement	3
1.3	Objective of Study	5
1.4	Outline	5

CHAPTER TWO: LITERATURE REVIEW

2.1	Nanot	7	
2.2	Carbon nanotubes (CNTs)		
	2.2.1	History of CNTs	9
	2.2.2	Classification of CNTs	10
	2.2.3	Properties of CNTs	10
		2.2.3.1 Thermal Properties of the CNTs	10
		2.2.3.2 Mechanical properties of CNTs	11
	2.2.4	Synthesis of nanotubes	12
		2.2.4.1 Arc discharge method	12
		2.2.4.2 Laser Ablation	13
		2.2.4.3 Chemical vapor deposition (CVD)	13
2.3	Surface Modification of CNTs		15

2.4	Polyethylene		17	
	2.4.1	Linear Low Density Polyethylene (LLDPE)	18	
		2.4.1.1 Properties and applications of LLDPE	18	
2.5	Natur	al rubber	19	
2.6	Thern	noplastic Natural Rubber Composite	20	
2.7	Prope	23		
	2.7.1	Thermal properties	23	
	2.7.2	Mechanical properties	24	
		2.7.2.1 Tensile strength	24	
		2.7.2.2 Impact strength	25	
		2.7.2.3 Dynamic mechanical analysis	25	
CHA	APTER ⁷	THREE: RESEARCH METHODOLOGY		
3.1	Mater	rials	28	
3.2	Prepa	ration of Materials	28	
	3.2.1	Preparation of Liquid Natural Rubber (LNR)	29	
	3.2.2	Acid-oxidized multi-walled carbon		
		nanotubes (MWNTs 2)	29	
3.3	Comp	Composites Preparation		
	3.3.1	Preparation of TPNR Matrix	29	
	3.3.2	Preparation of TPNR and Multi-walled		
		Carbon Nanotubes (MWNTs 1 and MWNTs 2)		
		Composites (Optimum Processing Parameter)	30	
	3.3.3	Preparation of TPNR and Multi-walled		
		Carbon Nanotubes (MWNTs 1 and MWNTs 2)		
		Composites (Different Amount of MWNTs)	31	
	3.3.4	Moulding of the Samples	32	
	3.3.5	Summary of Preparation of Composites	32	
3.4	Chara	Characterization of Composites		
	3.4.1	Tensile Testing	34	
	3.4.2	2 Impact Testing		
34				
	3.4.3	Dynamic Mechanical Analysis	35	
	3.4.4	Field Emission Scanning Electron Microscopy	36	