UNIVERSITI TEKNOLOGI MARA

IMPLEMENTATION OF SINGLE PHASE ELECTRONIC TRANSFORMER (SPET) USING SINGLE-PHASE MATRIX CONVERTER (SPMC) TOPOLOGY

HAKIMAS MOHD HANAFI

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Electrical Engineering

October 2013

AUTHOR'S DECLARATION

I declare that this work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. The topic has not been submitted to any other academic institution or non institution for any other degree or qualification.

I, hereby acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Hakimas Mohd Hanafi
Student I.D. No.	:	2006209642
Programme	:	Master of Science In Electrical
Faculty	:	Faculty of Electrical Engineering
Title	:	Implementation of Single Phase Electronic Transformer (SPET) Using Single-Phase Matrix Converter (SPMC) Topology
Signature of Student	:	Care .
Date	:	October 2013

ABSTRACT

This work is concerned on the investigation of electronic transformer (ET) using single phase matrix converter (SPMC) topology. The ET implement SPMC as a two stage converter, one that performs high frequency conversion to provide a high input frequency supply to the transformer and another that reduces the output frequency of the transformer as an interface to the load connected. Successful operation could lead to high frequency operation of the transformer, leading to smaller transformer design for the same power handling requirements. The SPMC is proposed to ensure limited reactive device use but in the presence of transformers and reactive devices; damaging high voltage and high current spikes arises and need to be mitigated using new safecommutation technique. The output of ET is controlled using PWM technique implemented using XILINX FPGA digital control as the control electronics implementation. Simulation is carried out using MATLAB/Simulink (MLS) and Pspice to investigate the behaviour and basic operation of the ET before practical laboratory implementations. It is presented that the SPMC is capable of being operated as primary and secondary converter in ET to realize high frequency operation on the transformer. An experimental laboratory work was then constructed to verify results obtained from both simulations. It is presented that the proposed ET using SPMC as a two stage converter had been successfully developed and realized complete with a new-implemented safe-commutation strategy to mitigate the high voltage and high current spikes as the effect of transformer and reactive device being used.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	ix
LIST OF FIGURES	х
LIST OF SYMBOLS	xix
LIST OF ABBREVIATIONS	XX

CHAPTER ONE : INTRODUCTION

1.1	Introduction	1
1.2	Problem Statement	2
1.3	Research Objective	2
1.4	Scope of the Research	3
1.5	Significance of the Study	3
1.6	Organization of the Thesis	3

CHAPTER TWO: REVIEW OF ELECTRONIC TRANSFORMER

2.1	Introdu	ction		5
2.2	Power Transformer			5
2.3	Electro	nic Transformer		6
2.4	High F	High Frequency Link		
	2.4.1	DC-DC Link		7
	2.4.2	DC-AC Link		8
	2.4.3	AC-DC Link		8
	2.4.4	AC-AC Link		9

2.5	Electronic Transformer High Frequency			9
2.6	Electro	Electronic Transformer Topologies		
2.7	Power Electronic Converter			13
	2.7.1	AC to AC	C Converter	13
		2.7.1.1	Direct AC to AC Converter	13
		2.7.1.2	Indirect AC to AC Converter	14
2.8	Matrix	Converter	(MC)	15
2.9	Single	ingle Phase Matrix Converter (SPMC)		
2.10	Commutation Problems			10
	2.10.1	Factors o	f Commutation	17
		2.10.1.1	Inductive Effect	18
		2.10.1.2	Switching Transitions of IGBT Switch	18
			Module	
2.11	Switch	ing Devices	5	18
2.12	Practical Switch-Cell Configuration			19
2.13	Pulse Width Modulation (PWM)			23
2.14	Control	l Electronic	s	23
2.15	Conclu	sions		24

CHAPTER THREE : THE PROPOSED ELECTRONIC TRANSFORMER USING SINGLE- PHASE MATRIX CONVERTER

Introduction	25
The Proposed Electronic Transformer Circuit	25
Proposed ET Using SPMC	27
Operation of Primary Converter	31
Operation of Secondary Converter	36
Conclusion	40
	Introduction The Proposed Electronic Transformer Circuit Proposed ET Using SPMC Operation of Primary Converter Operation of Secondary Converter Conclusion

CHAPTER FOUR : SWITCHING ARRANGEMENTS

4.1	Introdu	action	41
4.2	Proposed Safe-Commutation Technique		41
	4.2.1	Safe-Commutation Technique at Primary Converter	44