UNIVERSITI TEKNOLOGI MARA

EXTREMAL PROPERTIES, COEFFICIENT INEQUALITIES AND RADIUS PROPERTIES OF A CERTAIN CLASS OF CLOSE-TO-CONVEX FUNCTIONS

ABDULLAH BIN YAHYA

Thesis submitted in fulfillment of the requirements for the degree of

Master of Science

Faculty of Computer and Mathematical Sciences

December 2013

AUTHOR'S DECLARATION

I declare that the work in this thesis/dissertation was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	d)	Abdullah Bin Yahya
Student's ID No.	4	2010778063
Programme		Master of Science (CS 780)
Faculty		Computer and Mathematical Sciences
Thesis Title	÷	Extremal properties, coefficient inequalities and radius properties of a certain class of close-to-convex functions

Signature of Student

Date

December 2013

:

:

ABSTRACT

This thesis is concerned with the function f defined on the open unit disk $E = \{z : |z| < 1\}$ of the complex plane. Let A be the class of analytic functions defined on E which is normalised and has the Taylor series representation of the form

$$f(z) = z + a_2 z^2 + a_3 z^3 + \dots + a_n z^n + \dots = z + \sum_{n=2}^{\infty} a_n z^n$$

This thesis concentrates on the class $\mathcal{G}(\alpha, \delta)$ where functions in this class satisfy the condition

$$\operatorname{Re}\left\{e^{i\alpha} \frac{zf'(z)}{g(z)}\right\} > \delta, \qquad (z \in E)$$

with $|\alpha| < \pi$, $\cos \alpha > \delta$ and $g(z) = \frac{z}{1-z^2}$. Some of the basic properties are attained for $G(\alpha, \delta)$ including the representation theorem and extremal properties such as coefficient bounds, distortion theorems, covering theorems and rotation theorems. The arc length and the area for functions in this class are also obtained.

This thesis also discusses on the coefficient inequalities for $\mathcal{G}(\alpha, \delta)$. Lastly, we deal with the bounds for $\frac{f(z)}{z}$ and f'(z) and obtain results for the radius of univalence, the radius of starlikeness, and the radius of convexity for this class.

TABLE OF CONTENTS

		Page
AUT	'HOR'S DECLARATION	ii
ABSTRACT		iii
ACK	KNOWLEDGEMENTS	iv
ТАВ	BLE OF CONTENTS	v
LIST	Γ OF SYMBOLS	vii
	APTER ONE : PRELIMINARIES	
1.1	The Classes of Analytic and Univalent Functions	1
1.2	Class of Functions with Positive Real Part, P	2
1.3	Some Subclasses of Univalent Functions	5
1.4	Multivalent Functions	9
1.5	Subordination	9
1.6	Function with Negative Coefficient	10
1.7	Radius Problem	10
1.8	Some Properties of Functions in a Certain Class	11
1.9	Objective of the Study	15
1.10	Thesis Outline	15
CHA	APTER TWO : EXTREMAL PROPERTIES	
2.1	Introduction	16
2.2	Representation Theorem	19
2.3	Some Extremal Properties	25
2.4	Arc Length and Area	48
2.5	Summary	56
CHA	APTER THREE : COEFFICIENT INEQUALITIES FOR THE	
	CLASS $\mathcal{G}(lpha,\delta)$	

3.1	Introduction	57
3.2	Second Hankel Determinant	58
3.3	Summary	69

СН	APTER FOUR : RADIUS PROPERTIES FOR $\mathcal{G}(lpha,\delta)$	
4.1	Introduction	70
4.2	Bounds for $\frac{f(z)}{z}$ and $f'(z)$	71
4.3	Radius of Univalence, R_U	77
4.4	Radius of Starlikeness, R_{St}	79
4.5	Radius of Convexity, R_{κ}	83
4.6	Summary	86
CH	APTER FIVE : CONCLUSION AND RECOMMENDATION	87
REI	FERENCES	88

*

REFERENCES

4