CALCIUM SILICATE AND SAND CEMENT BRICKWALL UNDER AXIAL LOAD CAPACITY

By

WAN RUSLAN BIN WAN HASSAN

Report is submitted as the requirement for the degree of Bachelor Engineering (Hons) (Civil)

UNIVERSITI TEKNOLOGI MARA APRIL 2004 Declaration Form.

I, Wan Ruslan Bin Wan Hassan (2000224558) confirm that the work is my own and that appropriate credit has been given where reference has been made to the work of others.

(April 15, 2004)

ABSTRACT

Commonly, reinforced concrete, timber and steel are used as a frame structure acting as a structural member for load transmittal to the foundation and bricks are used in construction industries only as infill. Bricks can also be used as an external and internal load bearing walls, however the use of bricks as a load bearing structural element is relatively few in Malaysia. With the use of this structural masonry method of construction, faster and cheaper construction can be achieved. The savings in terms of using formwork and reinforcing steel can be made and the rate of construction can be reduced since frames are less or not required at all and the waiting time for the structural concrete to cure can be eliminated.

The effects of using different type of material for brick making in construction environment are suggested to study. In the preliminary studies on identifying the suitability of locally produced bricks as load bearing walls, Kartini & Siti Hawa (2001) found that a unit of calcium silicate bricks and sand cement bricks gave a compressive strength of 10.30 N/mm² and 8.59 N/mm² respectively. So by acting axial load are applied on top of the brick walls built with mortar, in order to determine the structure behavior of the wall as load bearing wall and this is carried out by erecting two units of calcium silicate brick walls and two units of sand cement brick walls of size 1000mm x 1000mm. the thickness of the wall is ½ brick. However, the study concluded that calcium silicate brick wall showed better performance, with maximum lateral displacement of 4.85 mm, vertical deflection of 14.41mm and ultimate load of 803.45 kN.

TABLE OF CONTENTS

PA	GE
----	----

Title Page	i
Acknowledgement	
Abstract	iii
Table of Contents	iv
1.0 INTRODUCTION	1
1.1 General	1
1.2 Objectives	3
1.3 Scope Of Work	3
2.0 LITERATURE REVIEW	5
2.1 Bricks	5
2.2 Brick Types	6
2.3 Sand Cement Bricks	8
2.4 Calcium Silicate Bricks	9
2.5 Bricks Properties	10
2.6 Brick as Load Bearing Walls2.6.1 Load Distribution in Brickwall	15 16
2.7 Failure Criterias of Brickwall	17
2.8 Mortar Properties	18
3.0 METHODOLOGY	21
3.1 Introduction	21
3.2 Preparation of Samples	21
3.3 Testing Arrangement	23
4.0 RESULTS AND DISCUSSION	27
4.1 Results	27

4.	1.1 Ultimate Load	27
4.	1.2 Lateral Displacement	32
4.	1.3 Stress Strain Relationship	34
4.	1.4 Crack Pattern	39
4.2	Discussion	41
5.0	CONCLUSIONS AND RECOMMENDATIONS	45
5.1	Conclusion	45
5.2	Recommendatios	45

REFERENCES

APPENDICES