BEHAVIOUR OF REINFORCED CONCRETE BEAM WITH SILICA FUME UNDER DYNAMIC LOADING

A report submitted to Universiti Teknologi MARA in partial fulfilment of the requirements for the Degree of Bachelor of Engineering (Hons.) (Civil) in the Faculty of Civil Engineering

Presented by

RUDY TAWIE AK JOSEPH SIPI

Faculty of Civil Engineering Universiti Teknologi MARA Shah Alam Selangor Darul Ehsan MALAYSIA

Declaration:

I hereby declare that this report has not been submitted, either in the same or different form, to this or any other university for a degree, and except where reference is made to the work of others, it is believed to be original.

(RUDY TAWIE)

ABSTRACT

Behaviour of Reinforced Concrete Beam with Silica Fume under Dynamic Loading

Rudy Tawie J. S.

Concrete mixes design to produce 42 N/mm² – 84 N/mm² in compressive strength are easily obtainable today with silica fume replacing a portion of the cement content. Such concretes with a design compressive strength exceeds 42 N/mm² may be defined as "High Strength Concrete". For several reasons, there has recently been a marked interest in the determination of the dynamic characteristics of structures and their response under dynamic loads and effect. Subjected to dynamic loading under sinusoidal wave pattern, a study has been carried out to make an experimental investigation on reinforced concrete beam (Grade 60 N/mm²) incorporating silica fume replacing cement by weight of w/c ratio of 0.30, with respect to the serviceability and ultimate limits. A total of three specimens each with different silica fume proportion (8%, 12% and 16%) by weight of cement were cast and tested under the dynamic load. Parameters investigated include deflections, crack widths and crack lengths.

Keywords: High strength concrete, reinforced concrete beam, silica fume, dynamic loading, deflection, cracking.

CONTENTS

ABSTRACT			
ACI	KNOWLEDGEMENT	- iv -	
LIS	T OF FIGURES	- viii	
LIS	T OF TABLES	- ix -	
NO'	TATIONS	- x -	
CH	APTER 1		
	INTRODUCTION	1	
1.1	BACKGROUND OF STUDY	1	
1.2	PROBLEM STATEMENT	2	
	OBJECTIVE OF STUDY	3	
1.4	SCOPE OF STUDY	4	
CH	APTER 2		
2.0	LITERATURE REVIEW :	5	
2.1	HIGH STRENGTH CONCRETE (HSC) WITH SILICA FUME	5	
	2.1.1 SILICA FUME	6	
	2.1.2 MICROSTRUCTURE	8	
	2.1.3 POROSITY	8	
	2.1.4 WORKABILITY	8	
	2.1.5 MODULUS OF ELASTICITY	10	
	2.1.6 DURABILITY	11	
	2.1.7 CONCRETE MIX DESIGN 2.1.8 AGE AT TEST	11	
	2.1.6 AGE AT TEST 2.1.9 CURING CONDITIONS	13	
22	DYNAMIC LOADING	14	
مند . سند	2.2.1 GENERAL	14	
	2.2.2 STRUCTURAL DYNAMIC CONCEPTS	16	
	2.2.3 PREVIOUS STUDIES	17	
СН	APTER 3		
3.0	THEORETICAL BASIS	18	
3.1	DEFLECTION	18	
	3.1.1 DEFLECTION UNDER DYNAMIC LOAD	18	
3.2	CRACKING	19	
	3.2.1 CRACK WIDTH UNDER DYNAMIC LOAD	20	
3.3		22	
	3.3.1 DESIGN CONSIDERATIONS	22	

	3.3.2	DESIGN CALCULATIONS	22
CHA	PTER	: 4	
		HODOLOGY	29
		ERIALS	29
4.2	EXPE	RIMENTAL PROGRAM	30
	4.2.1	OTHER TESTS	30
4.3	PREP	ARATION AND CASTING OF CONCRETE CUBES AND BEAMS	34
	4.3.1	APPARATUS	34
	4.3.2	MIX DESIGN	35
4.4	TEST	SET-UP	37
	4.4.1	POSITION OF STRAIN GAUGE	37
	4.4.2	TESTING EQUIPMENT	38
4.5	EXPE	RIMENTAL PROCEDURE	38
	4.5.1	DYNAMIC LOADING	38
CHA	APTEF	2.5	
5.0	RESU	ILTS AND DISCUSSION	40
5.1	MIXE	S	40
5.2	EFFE	CT OF SILICA FUME	40
5.3	EFFE	CT OF SILICA FUME DOSAGE	42
5.4	STAT	TIC LOAD TEST	43
5.5	MOD	ULUS OF ELASTICITY	44
5.6	DYN.	AMIC LOADING	46
5.7	DEFL	ECTION	46
5.8	CRAG	CKS PROPAGATION	49
5.9	CRAC	CK WIDTH AND CRACK LENGTH	50
5.10	SAMI	PLE CALCULATIONS	52
	5,10.1	CALCULATION OF BENDING STRESSES	52
	5.10.2	STRAIN ANALYSIS	53
	5.10.3	CALCULATION OF BENDING MOMENT	54
	5.10.4	CALCULATION FOR DEFLECTION USING LOVEGROVE -	
		SALAH EQUATION	55
	5.10.5		
		SALAH EQUATION	55
	APTEI		
6.0		CLUSIONS AND RECOMMENDATIONS	56
		CLUSIONS	56
6.2	RECO	OMMENDATIONS	57
REE	EREN	CES	58