UNIVERSITI TEKNOLOGI MARA

CHEMICAL CONSTITUENTS AND BIOLOGICAL ACTIVITIES OF SYZYGIUM FILIFORME VAR. FILIFORME STEM BARK

MOHD HAFIZ BIN AHMAD

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Applied Sciences

August 2015

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	:	Mohd Hafiz Bin Ahmad
Student ID No.	:	2010701575
Programme	:	Master of Science (By Research)
Faculty	:	Applied Sciences
Thesis Title	:	Chemical Constituents and Biological Activities of
		Syzygium filiforme var. filiforme Stem Bark
		117

Signature of Student : August 2015 Date

ABSTRACT

The stem bark of Syzygium filiforme var. filiforme from family of Myrtaceae was investigated for its chemical constituents and biological activities. About 3 kg of the stem bark was extracted successively using solvent of different polarity. Various chromatographic methods were used to isolate and purify compounds from dichloromethane and methanol extracts such as vacuum liquid chromatography, glass column, centrifugal thin layer chromatography, thin layer chromatography and preparative thin layer chromatography. This study resulted in the isolation of five pentacyclic triterpenoids and two phytosterols which are 2α , 3β , 23-trihydroxyolean-12-en-28-oic acid (arjunolic acid, SF1), 2α , 3β -dihydroxylup-20(29)-en-28-oic acid (alphitolic acid, SF2), 3β-hydroxylup-20(29)-en-28-oic acid (betulinic acid, SF3), 3βhvdroxyurs-12-en-28-oic acid (ursolic acid, SF4), ursolic acid 3-methyl ester (SF5), β -sitosterol (SF6) and stigmasterol (SF7). Structural identification was accomplished using spectroscopic methods such as ultraviolet (UV), infrared (IR), mass spectroscopy (MS), 1D and 2D nuclear magnetic resonance (NMR) (HMBC and HMQC). The methanolic extract showed moderate activities with IC_{50} values of 44.7±6.42 μ g/mL compared to ascorbic acid (IC₅₀ = 7.9±1.20 μ g/mL) for DPPH assay but good activity for α -glucosidase assay with IC₅₀ values of 6.31±0.90 µg/mL compared to 1-deoxynojirimycin (IC₅₀ = $103.79\pm6.36 \mu g/mL$). Dichloromethane and hexane extracts showed weak activity on DPPH assay but dichloromethane extract showed good activity for α -glucosidase assay. Major compounds SF1, SF2, SF3 and SF4 were tested for DPPH and showed no promising activity. SF1, SF2, SF3 and SF4 were also tested for α -glucosidase assay but only SF1 and SF3 gave moderate activity with IC₅₀ values of 562.34 \pm 11.80 and 501.19 \pm 8.20 μ M, respectively. The crude extracts and major compounds were also tested on antibacterial activity against Escherichia coli, Staphylococcus aureus and Bacillus subtilis. The methanolic and hexane extracts showed inhibition on tested organisms but no inhibition from dichloromethane extract. SF1 showed inhibition against E. coli, B. subtilis and S. aureus with minimum inhibition concentration at 1800 µg/mL, 900 µg/mL and 450 µg/mL, respectively. SF2 showed inhibition against S. aureus at 900 µg/mL. Then, SF4 showed inhibition against E. coli at 1800 μ g/mL and no inhibition showed by SF3 on tested bacteria. The MBC values of hexane extract, SF1 and SF4 against E.Coli. Methanol and hexane extracts showed inhibition on S. Aureus with MBC values of 1000 and 1100 µg/mL, respectively. Meanwhile, SF1 and SF2 showed MBC values of 560 and 1000 µg/mL, respectively against same bacteria. Finally, there are only hexane extract and SF1 showed inhibition at high concentration against B. subtilis with MBC values 1800 and 1100 µg/mL, respectively.

TABLE OF CONTENTS

	Page		
AUTHOR'S DECLARATION			
ABSTRACT	iii		
ACKNOWLEDGEMENTS	iv		
TABLE OF CONTENTS	v		
LIST OF TABLES	viii		
LIST OF FIGURES	ix		
LIST OF SCHEMES	xi		
LIST OF SYMBOLS	xii		
LIST OF ABBREVIATIONS	xiii		
CHAPTER ONE: INTRODUCTION	1		
1.1 Research Background	1		
1.2 Problem Statement	2		
1.3 Objectives of Study			
CHAPTER TWO: LITERATURE REVIEWS	4		
2.1 The Family Myrtaceae			
2.1.1 The Botany and Morphology of the Myrtaceae	5		
2.1.2 Traditional and Medicinal Uses of Myrtaceae Plants	6		
2.2 The Botany, Morphology and Medicinal Uses of Syzygium Genus	8		
2.3 Syzygium filiforme var. filiforme	10		
2.4 Chemical Constituents of Syzygium Species	11		
2.4.1 Terpenoids	11		
2.4.2 Flavonoids	16		
2.5 Biological Activity of Syzygium Species	18		
2.6 Biosynthesis of Triterpenoids	21		

CHAPTER THREE: EXPERMENTAL		
3.1 General Procedures		
3.1.1 Spectroscopic Techniques	24	
3.1.2 Chromatographic Methods	24	
3.1.3 Preparation of Anisaldehyde	25	
3.1.4 Phytochemical Screening	25	
3.1.4.1 Terpenes Screening and Detection	25	
3.1.4.2 Flavonoids Screening and Detection	26	
3.1.5 Plant Material and Extraction	26	
3.1.6 Fractionation and Isolation	27	
3.1.7 Spectral Data		
3.2 Biological Assays		
3.2.1 Diphenylpicrylhydrazyl (DPPH) Assay	33	
3.2.2 Antidiabetic Assay	33	
3.2.2.1 Reagents and Test Samples for <i>in vitro</i> α -Glucosidase		
Inhibitory Activity	34	
3.2.2.2 α -Glucosidase Inhibitory Assay	34	
3.2.3 Antibacterial Assays	35	
3.2.3.1 Chemicals and Reagents	35	
3.2.3.2 Microorganism Strains	35	
3.2.3.3 Micro-dilution Broth Plate Method	35	
CHAPTER FOUR: RESULTS AND DISCUSSION	37	
4.1 Isolation of Triterpenoids of Syzygium filiforme var. filiforme	37	
4.2 Structural Elucidation of Triterpenoids	37	
4.2.1 Triterpenoid SF1, Arjunolic Acid	38	
4.2.2 Triterpenoid SF2, Alphitolic Acid	47	
4.2.3 Triterpenoid SF3, Betulinic Acid	55	
4.2.4 Triterpenoid SF4, Ursolic Acid	64	
4.2.5 Triterpenoid SF5, Ursolic Acid 3-Methyl Ester	72	
4.2.6 Triterpenoid SF6, β -Sitosterol	80	
4.2.7 Triterpenoid SF7, Stigmasterol	85	
4.3 Biological Activities of Syzygium filiforme var. filiforme	90	